Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 52(12): e9169, 2019. tab, graf
Article in English | LILACS | ID: biblio-1055475

ABSTRACT

We investigated the effect of caffeine ingestion combined with a 2-wk sprint interval training (SIT) on training-induced reductions in body adiposity. Twenty physically-active men ingested either 5 mg/kg of cellulose as a placebo (PLA, n=10) or 5 mg/kg of caffeine (CAF, n=10) 60 min before each SIT session (13×30 s sprint/15 s of rest). Body mass and skinfold thickness were measured pre- and post-training. Energy expenditure was measured at rest, during exercise, and 45 min after exercise in the first SIT session. Body fat was similar between PLA and CAF groups at pre-training (P>0.05). However, there was a significant decrease in body fat after training in the CAF group (−5.9±4.2%, P<0.05) but not in PLA (1.5±8.0%, P>0.05). There was no difference in energy expenditure at rest and during exercise between PLA and CAF groups (P>0.05), but the post-exercise energy expenditure was 18.3±21.4% greater in the CAF than in the PLA group (P<0.05). In conclusion, caffeine ingestion before SIT sessions induced a body fat loss that may be associated with higher post-exercise energy expenditure.


Subject(s)
Humans , Male , Adult , Young Adult , Oxygen Consumption/drug effects , Caffeine/administration & dosage , Adipose Tissue/drug effects , Energy Metabolism/drug effects , High-Intensity Interval Training , Double-Blind Method
2.
Braz. j. med. biol. res ; 52(6): e8593, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011584

ABSTRACT

The objective of this study was to verify the agreement between pre-programmed and executed pacing during race walking and whether level of the athletes experience and performance influenced this relationship. Twenty-nine national and international race walkers participated in this study (14 males, 24.0±7.1 years old, and 15 females, 23.3±7.3 years old). Pre-programmed pacing for 10- and 20-km official walking races was self-selected via demonstrative pacing charts prior to races, while executed pacing was analyzed by a specialist investigator via an individual plot of current velocity versus distance. There was no agreement between pre-programmed and executed pacing (P=0.674). There was no association between the ability to match the pre-programmed pace with the executed pace and race walking experience or level of performance. Low- and high-performance athletes pre-programmed a similar pacing profile (P=0.635); however, high-performance athletes generally executed an even pacing strategy, while low-performance athletes generally adopted a positive pacing strategy (P=0.013). Race walkers did not faithfully match their pre-programmed with their executed pacing, and this seemed to be independent of previous experience and level of performance. High-performance athletes, however, tended to execute an even pacing strategy, even though this had not been pre-programmed.


Subject(s)
Humans , Male , Female , Adult , Young Adult , Physical Endurance/physiology , Running/physiology , Athletic Performance/physiology , Athletes
3.
Braz. j. med. biol. res ; 42(5): 404-412, May 2009. ilus, tab
Article in English | LILACS | ID: lil-511332

ABSTRACT

This study examined the effects of pre-exercise carbohydrate availability on the time to exhaustion for moderate and heavy exercise. Seven men participated in a randomized order in two diet and exercise regimens each lasting 3 days with a 1-week interval for washout. The tests were performed at 50 percent of the difference between the first (LT1) and second (LT2) lactate breakpoint for moderate exercise (below LT2) and at 25 percent of the difference between the maximal load and LT2 for heavy exercise (above LT2) until exhaustion. Forty-eight hours before each experimental session, subjects performed a 90-min cycling exercise followed by 5-min rest periods and a subsequent 1-min cycling bout at 125 percent VO2max/1-min rest periods until exhaustion to deplete muscle glycogen. A diet providing 10 percent (CHOlow) or 65 percent (CHOmod) energy as carbohydrates was consumed for 2 days until the day of the experimental test. In the exercise below LT2, time to exhaustion did not differ between the CHOmod and the CHOlow diets (57.22 ± 24.24 vs 57.16 ± 25.24 min). In the exercise above LT2, time to exhaustion decreased significantly from 23.16 ± 8.76 min on the CHOmod diet to 18.30 ± 5.86 min on the CHOlow diet (P < 0.05). The rate of carbohydrate oxidation, respiratory exchange ratio and blood lactate concentration were reduced for CHOlow only during exercise above LT2. These results suggest that muscle glycogen depletion followed by a period of a low carbohydrate diet impairs high-intensity exercise performance.


Subject(s)
Adult , Humans , Male , Carbohydrate Metabolism/physiology , Dietary Carbohydrates/metabolism , Energy Metabolism/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Dietary Carbohydrates/administration & dosage , Exercise Test/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL