Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2001 Feb-Apr; 38(1-2): 84-9
Article in English | IMSEAR | ID: sea-27006

ABSTRACT

The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the monomeric globular proteins such as horseradish peroxidase (HRP) from a plant, human serum albumin (HSA) and prothrombin from ovine blood serum, and for the membrane-associated, worm-like elongated protein, spectrin, from ovine erythrocytes. Structural alterations in these proteins were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of the denaturants, even at concentrations below 100 mM, were higher than those measured in absence of the denaturants. Both steady-state and time-resolved fluorescence emission properties of tryptophan and of the extrinsic probe PRODAN were used for monitoring conformational changes in the proteins in presence of different low concentrations of the denaturants. These results are consistent with earlier studies from our laboratory indicating structural perturbations in proteins at the tertiary level, keeping their native-like secondary structure and their biological activity more or less intact.


Subject(s)
Acrylamide/pharmacology , Animals , Circular Dichroism , Erythrocytes/chemistry , Horseradish Peroxidase/chemistry , Humans , Models, Chemical , Protein Denaturation , Prothrombin/chemistry , Serum Albumin/chemistry , Sheep , Spectrometry, Fluorescence , Time Factors , Tryptophan/chemistry
2.
Indian J Biochem Biophys ; 1998 Dec; 35(6): 321-32
Article in English | IMSEAR | ID: sea-26960

ABSTRACT

The interaction of coralyne, an antitumour alkaloid with natural and synthetic duplex DNAs was investigated under conditions where the drug existed fully as a true monomer for the first time using spectrophotometric, spectrofluorimetric, circular dichroic and viscometric techniques. The absorption spectrum of coralyne monomer showed hypochromic and bathochromic effects on binding to duplex DNAs. This effect was used to determine the binding parameters of coralyne. The binding constants for four natural DNAs and four synthetic polynucleotides obtained from spectrophotometric titration, according to an excluded site model, using McGhee-von Hippel analysis, were all in the range of (0.38-9.8) x 10(5) M-1, and showed a relatively high specificity for the GC rich ML DNA and the alternating GC polynucleotide. The binding of coralyne decreased with increasing ionic strength, indicating that the binding affinity has a strong electrostatic component. Coralyne stabilized all the DNAs against thermal strand separation. The intense steady state fluorescence of coralyne was effectively quenched on binding to DNAs and the quantitative data on the Stern-Volmer quenching constant obtained was sequence dependent, being maximum with the GC rich DNA and alternating GC polymer. Circular dichriosm studies further evidenced for a strong perturbation of the B-conformation of DNAs consequent to coralyne binding with the concomitant development of extrinsic circular dichroic bands for the bound drug molecules suggesting their strong intercalated geometry in duplex DNAs. Further tests of intercalation using viscosity measurements on linear and covalently closed plasmid DNA conclusively proved the strong intercalation of coralyne in duplex DNA. Binding of the closely related natural alkaloid, berberine under these conditions showed considerably lower affinity to duplex DNAs in all experiments. Taken together, these results suggest that coralyne binds strongly to duplex DNAs by a mechanism of intercalation with specificity towards alternating GC duplex structure.


Subject(s)
Animals , Antineoplastic Agents/metabolism , Berberine/metabolism , Berberine Alkaloids/metabolism , Cattle , DNA/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Intercalating Agents/metabolism , Nucleic Acid Denaturation , Osmolar Concentration , Spectrum Analysis
3.
Indian J Biochem Biophys ; 1989 Aug; 26(4): 201-8
Article in English | IMSEAR | ID: sea-27132

ABSTRACT

The interaction of berberine chloride with natural and synthetic DNAs of differing base composition and sequences was followed by various spectroscopic and viscometric studies. The binding of berberine chloride was characterized by hypochromism and bathochromism in the absorption bands, enhancement of fluorescence intensity, stabilization against thermal denaturation, perturbations in the circular dichroic spectrum, increase in the contour length of sonicated rod-like DNA and induction of unwinding-rewinding process of covalently closed superhelical DNA, depending on the base composition and sequences of base pairs. Binding parameters determined from absorbance and fluorescence titration by Scatchard analysis, according to an excluded-site model, indicated a very high specificity of berberine to AT-rich DNAs and alternate AT polymer. Fluorescence quantum yield was maximum for the complexes with AT-rich DNAs and alternate AT polymer. Taken together, these results suggest that berberine chloride exhibits considerable specificity towards alternating AT polymer and binds to AT-rich DNAs by a mechanism of classical intercalation.


Subject(s)
Berberine , Berberine Alkaloids , Chemical Phenomena , Chemistry , DNA, Bacterial , Polydeoxyribonucleotides
SELECTION OF CITATIONS
SEARCH DETAIL