Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1352-1360, 2022.
Article in Chinese | WPRIM | ID: wpr-924746

ABSTRACT

This study investigated the effect of puerarin on human umbilical vein endothelial cells (HUVEC) injured with hydrogen peroxide (H2O2). HUVEC were divided into three groups: a control group, a model group (H2O2 400 μmol·L-1) and a puerarin-treated group (3, 10, 30 and 100 μmol·L-1). HUVEC were cultured with varied concentration of puerarin for 2 h and treated with H2O2 for another 24 h. Cell proliferation was detected by a CCK-8 assay. The mitochondrial membrane potential was measured by a JC-1 fluorescent probe. A transwell chamber assay was adopted to observe cell migration ability. Mitochondrial respiratory function was measured in a two-chamber titration injection respirometer (Oxygraph-2k). The expression of interleukin-1β (IL-1β), interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) was detected by quantitative real-time PCR. The expression of pyroptosis-mediated proteins, including cleaved-cysteinyl aspartate-specific proteinase-1 (caspase-1), N-gasdermin D (N-GSDMD), NOD-like receptor protein 3 (NLRP3) and purinergic ligand-gated ion channel 7 receptor (P2X7R) was detected by Western blot. The results show that 400 μmol·L-1 H2O2 treatment for 24 h causes obvious damage to HUVEC. Compared with the model group, puerarin protected against cellular injury in a dose-dependent manner, with the greatest effect at a dose of 30 and 100 μmol·L-1. Puerarin significantly decreased the mitochondrial membrane potential and improved mitochondrial function. Puerarin inhibited cell migration induced by H2O2, suppressed the expression of IL-1β, IL-18 and TNF-α, and down-regulated the pyroptosis-mediated protein. These changes are statistically significant (P < 0.05). These findings demonstrate that puerarin has a protective effect against H2O2-induced oxidative damage of HUVEC by inhibiting the migration of HUVEC cells. The mechanism may be related to improved mitochondrial respiratory function and inhibition of pyroptosis.

2.
Acta Pharmaceutica Sinica ; (12): 1872-1879, 2021.
Article in Chinese | WPRIM | ID: wpr-887012

ABSTRACT

Ischemic heart disease (IHD), which has been considered to be exclusively caused by stenosis or occlusion of coronary artery, is a significant cause of morbidity and mortality worldwide. Mitochondrial dysfunction is the main pathological basis of ischemic heart disease and reperfusion injury, and moderate mitochondrial autophagy can selectively remove damage proteins and organelles to maintain intracellular homeostasis, so mitochondrial autophagy is important for maintaining the homeostasis of cardiomyocytes. Natural drugs from plants are widely used in ischemic heart disease. In recent years, more and more natural drugs have been proven to alleviate myocardial cell damage after ischemia/reperfusion through mitochondrial autophagy. This paper reviews the research progress of natural drugs from plants medicines regulating mitochondrial autophagy in the treatment of ischemia heart disease.

SELECTION OF CITATIONS
SEARCH DETAIL