Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 117: e210107, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394474

ABSTRACT

BACKGROUND Leishmania parasites carry a double-stranded RNA virus (Leishmania RNA virus - LRV) that has been divided in LRV1 and LRV2. OBJECTIVES Leishmania (Viannia) braziliensis clinical isolates were assessed in order to determine LRV presence. METHODS Two-round polymerase chain reaction (PCR and nested PCR) was performed to detect LRV1 or LRV2 in L. (V.) braziliensis clinical isolates (n = 12). FINDINGS LRV1 was detected in three clinical isolates which was phylogenetically related to other sequences reported from other American tegumentary leishmaniasis (ATL) endemic areas of Brazil. Patients infected with L. (V.) braziliensis LRV-negative showed only cutaneous lesions while LRV-positive reported different manifestations. MAIN CONCLUSION Data presented here show for the first time that LRV1 is circulating in L. (V.) braziliensis clinical isolates from Rio de Janeiro State in Brazil.

2.
Mem. Inst. Oswaldo Cruz ; 112(10): 664-673, Oct. 2017. graf
Article in English | LILACS | ID: biblio-894838

ABSTRACT

BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.


Subject(s)
Humans , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/ultrastructure , Microscopy, Electron, Scanning , Chelating Agents/pharmacology , Epithelial Cells/microbiology , Time Factors , HeLa Cells , Iron
SELECTION OF CITATIONS
SEARCH DETAIL