Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
J Biosci ; 2019 Sep; 44(4): 1-12
Article | IMSEAR | ID: sea-214426

ABSTRACT

Type-III (T3) effectors PthXo1 and AvrXa10 of Xanthomonas oryzae pv. oryzae are translocated into rice cells to inducevirulence and avirulence on susceptible- and resistant-rice varieties Nipponbare and IRBB10, respectively. The translocation needs the bacterial T3 translocator Hpa1 and rice Oryza sativa plasma membrane protein OsPIP1;3. Here, weemployed the b-lactamase (BlaM) reporter system to observe PthXo1 and AvrXa10 translocation. The system wasestablished to monitor effectors of animal-pathogenic bacteria by quantifying the BlaM hydrolysis product [P] and fluorescence resonance energy transfer (FRET) of the substrate. The feasibility of the BlaM reporter in rice protoplasts wasevaluated by three criteria. The first criterion indicated differences between both [P] and FRET levels among wild types andOsPIP1;3-overexpressing and OsPIP1;3-silenced lines of both Nipponbare and IRBB10. The second criterion indicateddifferences between [P] and FRET levels in the presence and absence of Hpa1. The last criterion elucidated the coincidenceof PthXo1 translocation with induced expression of the PthXo1 target gene in protoplasts of Nipponbare and the coincidence of AvrXa10 translocation with induced expression of the AvrXa10 target gene in protoplasts of IRBB10. Theseresults provide an experimental avenue for real-time monitoring of bacterial T3 effector translocation into plant cells with apathological consequence.

2.
J Biosci ; 2019 Mar; 44(1): 1-8
Article | IMSEAR | ID: sea-214228

ABSTRACT

Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells that responds to environmentalchanges. Genetic analyses have shown that more than 40 autophagy-related genes (ATG) are directly involved in thisprocess in fungi. In addition to Atg proteins, most vesicle transport regulators are also essential for each step of autophagy.The present study showed that one Endoplasmic Reticulum protein in Saccharomyces cerevisiae, Tip20, which controlsGolgi-to-ER retrograde transport, was also required for starvation-induced autophagy under high temperature stress. Intip20 conditional mutant yeast, the transport of Atg8 was impaired during starvation, resulting in multiple Atg8 punctadispersed outside the vacuole that could not be transported to the pre-autophagosomal structure/phagophore assembly site(PAS). Several Atg8 puncta were trapped in ER exit sites (ERES). Moreover, the GFP-Atg8 protease protection assayindicated that Tip20 functions before autophagosome closure. Furthermore, genetic studies showed that Tip20 functionsdownstream of Atg5 and upstream of Atg1, Atg9 and Atg14 in the autophagy pathway. The present data show that Tip20,as a vesicle transport regulator, has novel roles in autophagy

3.
J Biosci ; 2014 Mar; 39(1): 127-137
Article in English | IMSEAR | ID: sea-161916

ABSTRACT

Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1ΔNT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1ΔNT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1ΔNT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

4.
J Biosci ; 2011 Mar; 36(1): 123-127
Article in English | IMSEAR | ID: sea-161521

ABSTRACT

Myzus persicae, a generalist phloem-feeding insect, develops with induced expression of the AtMYB44 gene. Special GLUCAN SYNTHESIS-LIKE (GSL) genes and β-1,3-glucan callose play an important role in plant defence responses to attacks by phloem-feeding insects. Here we report that AtGLS5 and AtMYB44 are both required for HrpNEainduced repression of M. persicae feeding from the phloem of Arabidopsis leaves. In 24 h successive surveys on large-scale aphid populations, the proportion of feeding aphids was much smaller in HrpNEa-treated plants than in control plants, and aphids preferred to feed from the 37 tested atgsl mutants rather than the wild-type plant. The atgsl mutants were generated previously by mutagenesis in 12 identified AtGSL genes (AtGSL1 through AtGSL12); in the 24 h survey, both atgsl5 and atgsl6 tolerated aphid feeding, and atgsl5 was the most tolerant. Consistently, atgsl5 was also most inhibitive to the deterrent effect of HrpNEa on the phloem-feeding activity of aphids as monitored by the electrical penetration graph technique. These results suggested an important role of the AtGSL5 gene in the effect of HrpNEa. In response to HrpNEa, AtGSL5 expression and callose deposition were induced in the wild-type plant but not in atgsl5. In response to HrpNEa, moreover, the AtMYB44 gene known to be required for repression of aphid reproduction on the plant was also required for repression of the phloem-feeding activity. Small amounts of the AtGSL5 transcript and callose deposition were detected in the atmyb44 mutant, as in atgsl5. Both mutants performed similarly in tolerating the phloem-feeding activity and impairing the deterrent effect of HrpNEa, suggesting that AtGSL5 and AtMYB44 both contributed to the effect.

5.
J Biosci ; 2010 Sep; 35(3): 435-450
Article in English | IMSEAR | ID: sea-161470

ABSTRACT

The harpin protein HrpN Ea induces Arabidopsis resistance to the green peach aphid by activating the ethylene signalling pathway and by recruiting EIN2, an essential regulator of ethylene signalling, for a defence response in the plant. We investigated 37 ethylene-inducible Arabidopsis transcription factor genes for their effects on the activation of ethylene signalling and insect defence. Twenty-eight of the 37 genes responded to both ethylene and HrpN Ea , and showed either increased or inhibited transcription, while 18 genes showed increased transcription not only by ethylene but also by HrpN Ea . In response to HrpN Ea , transcription levels of 22 genes increased, with AtMYB44 being the most inducible, six genes had decreased transcript levels, and nine remained unchanged. When Arabidopsis mutants previously generated by mutagenicity at the 37 genes were surveyed, 24 mutants were similar to the wild type plant while four mutants were more resistant and nine mutants were more susceptible than wild type to aphid infestation. Aphid-susceptible mutants showed a greater susceptibility for atmyb15, atmyb38 and atmyb44, which were generated previously by T-DNA insertion into the exon region of AtMYB15 and the promoter regions of AtMYB38 and AtMYB44. The atmyb44 mutant was the most susceptible to aphid infestation and most compromised in induced resistance. Resistance accompanied the expression of PDF1.2, an ethylene signalling marker gene that requires EIN2 for transcription in wild type but not in atmyb15, atmyb38, and atmyb44, suggesting a disruption of ethylene signalling in the mutants. However, only atmyb44 incurred an abrogation in induced EIN2 expression, suggesting a close relationship between AtMYB44 and EIN2.

6.
J Biosci ; 2007 Sep; 32(6): 1119-31
Article in English | IMSEAR | ID: sea-111145

ABSTRACT

Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death (HCD), drought tolerance, defence responses against pathogens and insects in plants, as well as enhance plant growth. Recently, we identified nine functional fragments of HpaG;Xooc, a harpin protein from Xanthomonas oryzae pv.oryzicola, the pathogen that causes bacterial leaf streak in rice. Fragments HpaG;1-94'HpaG;10-42, and HpaG;62-138, which contain the HpaG;Xooc regions of the amino acid sequence as indicated by the number spans, exceed the parent protein in promoting growth, pathogen defence and HCD in plants. Here we report improved productivity and biochemical properties of green tea (Camellia sinensis) in response to the fragments tested in comparison with HpaG;Xooc and an inactive protein control. Field tests suggested that the four proteins markedly increased the growth and yield of green tea, and increased the leaf content of tea catechols, a group of compounds that have relevance in the prevention and treatment of human diseases. In particular, HpaG;1-94 was more active than HpaG;Xooc in expediting the growth of juvenile buds and leaves used as green tea material and increased the catechol content of processed teas. When tea shrubs were treated with HpaH;Xooc and HpaG;1-94 compared with a control, green tea yields were over 55% and 39% greater, and leaf catechols were increased by more than 64% and 72%, respectively. The expression of three homologues of the expansin genes, which regulate plant cell growth, and the CsCHS gene encoding a tea chalcone synthase, which critically regulates the biosynthesis of catechols, were induced in germinal leaves of tea plants following treatment with HpaG;1-94 or HpaG;Xooc. Higher levels of gene expression were induced by the application of HpaG;1-94 than HpaG;Xooc. Our results suggest that the harpin protein, especially the functional fragment HpaG;1-94, can be used to effectively increase the yield and improve the biochemical properties of green tea, a drink with medicinal properties.


Subject(s)
Bacterial Proteins/chemistry , Camellia sinensis/metabolism , Humans , Molecular Sequence Data , Oryza/microbiology , Peptide Fragments/chemistry , Plant Diseases/microbiology , Tea/chemistry , Xanthomonas/pathogenicity
7.
J Biosci ; 2006 Dec; 31(5): 617-27
Article in English | IMSEAR | ID: sea-110975

ABSTRACT

Expression of HpaG(Xoo), a bacterial type-III effector, in transgenic plants induces disease resistance. Resistance also can be elicited by biocontrol bacteria. In both cases, plant growth is often promoted. Here we address whether biocontrol bacteria and HpaG(Xoo) can act together to provide better results in crop improvement. We studied effects of Pseudomonas cepacia on the rice variety R109 and the hpaG(Xoo)-expressing rice line HER1. Compared to R109, HER1 showed increased growth, grain yield, and defense responses toward diseases and salinity stress. Colonization of roots by P. cepacia caused 20% and 13% increase, in contrast to controls, in root growth of R109 and HER1. Growth of leaves and stems also increased in R109 but that of HER1 was inhibited. When P. cepacia colonization was subsequent to plant inoculation with Rhizoctonia solani, a pathogen that causes sheath blight, the disease was less severe than controls in both R109 and HER1; HER1, nevertheless, was more resistant, suggesting that P. cepacia and HpaG(Xoo) cooperate in inducing disease resistance. Several genes that critically regulate growth and defense behaved differentially in HER1 and R109 while responding to P. cepacia. In R109 leaves, the OsARF1 gene, which regulates plant growth, was expressed in consistence with growth promotion by P. cepacia. Inversely, OsARF1 expression was coincident with inhibition in growth of HER1 leaves. In both plants, the expression of OsEXP1, which encodes an expansin protein involved in plant growth,was concomitant with growth promotion in leaves instead of roots,in response to P. cepacia . We also studied OsMAPK, a gene that encodes a mitogen-activated protein kinase and controls defense responses toward salinity and infection by pathogens in rice. In response to P. cepacia, an early expression of OsMAPK was coincident with R109 resistance to the disease, while HER1 expressed the gene similarly whether P. cepacia was present or not. Evidently, P. cepacia and G(Xoo)-gene mediated resistance may act differently in rice growth and resistance. Whereas combinative effects of P. cepacia and HpaG(Xoo) in disease resistance have a great potential in agricultural use, it is interesting to study mechanisms that underlie interactions involving biocontrol bacteria, type-III effectors and pathogens.


Subject(s)
Bacterial Proteins/genetics , Burkholderia cepacia/genetics , Immunity, Innate , Oryza/genetics , Pest Control, Biological , Plant Proteins/genetics , Plant Roots/growth & development , Plants, Genetically Modified/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL