Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 27: e20180649, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1040227

ABSTRACT

Abstract Objective: Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. Methodology: We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. Results: We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log2FC>1). The CP-related genes Fgf16 (P=0.008, log2FC=1.13) and Tbx22 (P=0.011, log2FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. Conclusions: Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP.


Subject(s)
Animals , Male , Female , Cleft Palate/genetics , DNA Methylation , T-Box Domain Proteins/genetics , Fibroblast Growth Factors/genetics , Reference Values , Gene Expression , Cleft Palate/embryology , Cleft Palate/pathology , Sequence Analysis, DNA , T-Box Domain Proteins/analysis , Protein Interaction Domains and Motifs , Real-Time Polymerase Chain Reaction , Fibroblast Growth Factors/analysis , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL