Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E285-E291, 2014.
Article in Chinese | WPRIM | ID: wpr-804386

ABSTRACT

With the development of space life science, researches on ground-based microgravity simulation become more and more important for spaceflight to complement their limited missions. It is well known that bone marrow mesenchymal stem cells (BMSCs) are pluripotent, self-renewing cells with multi-lineage differentiation capacity on the ground, but their responses under microgravity and the underlying regulatory mechanisms are poorly understood. Ground-based microgravity simulation might affect cell proliferation, apoptosis and expression of surface molecules, and induce cytoskeletal reorganization, as well as alter the differentiation potential of BMSCs. In this review, how ground based microgravity simulation mediates BMSCs’ responses and its involved mechanisms are summarized to further understand the mechano-biological coupling in such process and provide theoretical references for space flight-induced pathophysiological alterations.

2.
Journal of Medical Biomechanics ; (6): E109-E126, 2013.
Article in Chinese | WPRIM | ID: wpr-804271

ABSTRACT

Culturing cells on planar substrate in vitro is a conventional cell biology method. However, each type of physiological tissues has its specific three-dimensional micro-structure, which provides various micro environment to regulate such biological processes as cell proliferation and differentiation. To date, a growing body of researches on the impacts of substrate micro-topography on cellular responses has been documented in the literature. It is found that micro-topograhical substrate can manipulate cell spreading, migrating, orientating, cytoskeleton remodeling, and stem cell differentiation, which are crucial to ex vivo tissue construction and surface modification of medical implanting materials. This review discusses the recent progresses of the effects of substrate micro-topography on cellular responses and the underlying mechanisms of mechano-biological coupling.

SELECTION OF CITATIONS
SEARCH DETAIL