Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Traditional Chinese Medicine ; (12): 678-683, 2024.
Article in Chinese | WPRIM | ID: wpr-1031461

ABSTRACT

This paper summarized Professor PENG Peichu's experience in the differentiation and treatment of prostate cancer in three phases and four stages. It is considered that prostatic cancer is categorized into root deficiency and branch excess, with depletion of healthy qi as the root, and the accumulation of cancer toxin as the minifestation. Clinical diagnosis and treatment of prostatic cancer can be divided into three phases and four stages according to the exuberance and decline of pathogenic and healthy qi and the changes of deficiency and excess of yin and yang. In the initial accumulation phase of cancer toxin (yang excess stage), the key pathogenesis is the accumulation of dampness, heat and static blood, and internal generation of cancer toxin, and the treatment should be resolving toxins, fighting cancer and dispelling yang excess. In the phase of healthy qi deficiency and toxin accumulation (yin deficiency stage), with the lung and kidney yin deficiency, dampness, heat and static toxin accumulation as the key pathogenesis, the treatment should be centered on mutual generation between metal and water to nourish kidney yin, supplemented with the method of clearing heat and draining dampness, activating blood and resolving toxins, for which self-made Nanbei Formula(南北方)is usually used. In the phase of yang deficiency and cold stagnation (yang deficiency stage and yin excess stage), with the spleen and kidney yang deficiency, cold dampness stagnation, static heat and toxin accumulation as the key pathogenesis, the treatment should be warming and tonifying spleen and kidney to dissipate cold accumulation; for deficiency of both yin and yang, and excess pathogen obstruction, modified Yanghe Decoction(阳和汤) is recommended, while for yang deficiency, cold congealing and blood stasis, self-made Wenshen Sanjie Formula(温肾散结方) can be used, and for cold dampness binding with cancer toxin, and cold complex with heat, self-made Quanan Formula (泉安方) is advised.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 39-44, 2023.
Article in Chinese | WPRIM | ID: wpr-988178

ABSTRACT

ObjectiveTo explore the mechanism of plumbagin as a novel ferroptosis inducer in bladder cancer inhibition. MethodBladder cancer T24 cells were used in this study. The effect of different concentrations of plumbagin (0.1, 1, 2, 3, 6, 12, 24, 48 μmol·L-1) on the viability of T24 cells was detected by cell counting kit-8 (CCK-8). The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L-1) on the apoptosis of T24 cells was detected by annexin V-fluorescein isothiocyanate (Annexin V FITC)/PI apoptosis kit. Different inhibitors (ferroptosis inhibitor Fer-1, apoptosis inhibitor VAD, and necroptosis inhibitor Nec-1) were used in combination with plumbagin (6 μmol·L-1). Reactive oxygen species (ROS) fluorescent probe (DCFH-DA), malonaldehyde (MDA), and glutathione (GSH) kits were used to detect the effects of different concentrations of plumbagin (1.5, 3, 6 μmol·L-1) on the level of ROS and the content of MDA and GSH in T24 cells, respectively. The effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L-1) on peroxide levels in T24 cells was detected by C11-BODIPY fluorescent probe. Western blot was used to detect the effect of different concentrations of plumbagin (1.5, 3, 6 μmol·L-1) on the protein expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), nuclear factor E2-related factor-2 (Nrf-2), and Kelch-like ECH-associated protein 1 (Keap1). ResultCompared with the blank group, plumbagin could inhibit the activity of T24 cells (P<0.05) with IC50 of 3.52 μmol·L-1. At the concentrations of 1.5, 3, 6 μmol·L-1, plumbagin significantly promoted the apoptosis of T24 cells (P<0.05) as compared with the blank group. Compared with the plumbagin group at 6 μmol·L-1, the ferroptosis inhibitor and apoptosis inhibitor groups could reverse the inhibitory effect of 6 μmol·L-1 plumbagin on the proliferation of T24 cells (P<0.05). Compared with the blank group, the plumbagin groups at 1.5, 3, 6 μmol·L-1 showed increased content of ROS, MDA, and lipid peroxides in T24 cells, decreased GSH level, and reduced SLC7A11, GPX4, and Nrf-2/Keap1 (P<0.05). Conclusionplumbagin can induce ferroptosis, and its mechanism is related to the Nrf-2/Keap1 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL