Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 565-574, 2019.
Article in English | WPRIM | ID: wpr-774965

ABSTRACT

The safety of nanomaterials, a crucial consideration for clinical translation, is enhanced by using building blocks that are biologically nontoxic. Here, we used poly(-glutamic acid) (-PGA) and dopamine as building blocks of polymeric nanomaterials for carrying hydrophobic anticancer drugs. The introduction of phenylalanine onto -PGA enabled the resulting amphiphilic derivative of -PGA acid to self-assemble in the presence of the anticancer drug paclitaxel (PTX) to form PTX-encapsulated micelles. The surfaces of PTX-loaded micelles were then coated with polymerized dopamine (PDA). The PDA-coated, amphiphilic -PGA-based micelles (AM) carrying PTX (PDA/AM/P) exerted near-infrared-responsive photothermal effects. Near-infrared irradiation of cancer cells treated with PDA/AM/P nanoparticles produced a greater anticancer effect than that observed in other treatment groups, indicating a synergistic effect. Intravenous administration of PDA/AM/P completely ablated tumors and prevented their recurrence. Notably, the safety profile of PDA/AM/P nanoparticles allowed PTX to be delivered at a 3.6-fold higher dose than was possible with PTX solubilized in surfactant, and circumvented the side effects of the surfactant. These results support the multifunctional potential of PDA/AM for the delivery of various hydrophobic drugs and imaging dyes for safe translation of nanomaterials into the clinic.

SELECTION OF CITATIONS
SEARCH DETAIL