Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Public Health ; 2012 Jan-Mar; 56(1): 95-99
Article in English | IMSEAR | ID: sea-139396

ABSTRACT

Background: The major contaminants usually encountered in milk and milk products include pesticide residues, heavy metals, and aflatoxin M1 (AFM1). Primarily, milk get contaminated before milching, from the cattle feed, from sources/materials used during the processing of milk as well as improper handling of the milk during the pre- and postprocessing period. Objective: The purpose of this study was to evaluate the effect of household practices on milk contaminants. Materials and Methods: Samples of pasteurized as well as unpasteurized milk (Vendor's milk) were analyzed for AFM1, pesticide residues, and heavy metals. Simulating the household practices, the impact of boiling on these contaminants was assessed. Results: The contaminant Aflatoxin M1 (AFM1) was detected at a concentration ranging from 0.071-0.075 ppb in unpasteurized as well as pasteurized milk samples analyzed during the course of study. Moreover, boiling had no impact on the quantity of AFM1 present in the milk. Pesticides and heavy metal contents were found to be within acceptable limits in all the milk samples tested. Conclusion: Mycotoxins especially aflatoxins in cattle feed and their consequential presence in milk and milk products is a serious concern world over as they are reported carcinogens. These fungal toxins are resistant to high temperatures and may lead to various health hazards. Preventive steps must be taken at each stage to ensure good quality of milk and milk products free from these contaminants. Awareness programs and education for the dairy farmers and milk processors may be helpful in this regard.

2.
Indian J Public Health ; 2012 Jan-Mar; 56(1): 88-94
Article in English | IMSEAR | ID: sea-139395

ABSTRACT

Background: Milk is susceptible to contamination by many microorganisms including microbial pathogens responsible for causing diseases. Various processes including pasteurization, boiling or storage under refrigerated conditions are undertaken to minimize the microbial contamination of milk. Objective: This study was undertaken with an objective to evaluate the effect of household practices on the microbiological profile of milk. Materials and Methods: Milk samples of pasteurized, ultra heat treated (UHT) as well as unpasteurized milk (Vendor's milk) were collected. The effect of different storage practices and treatments on the microbiological profile (standard plate count (SPC), coliform, E. coli, Salmonella, Shigella, Staphylococcus aureus, yeast and moulds, anaerobic spore count, and Listeria monocytogenes) of milk was studied using National/ International Standard Test Methods. Results: Average SPC in vendor's milk was found very high as compared to pasteurized milk. Coliform, yeast and moulds, E. coli, and Staphylococcus aureus were detected in the samples of vendor's as well as pasteurized milk. Boiling the milk reduces SPC and kills the other microorganisms. Storage of boiled milk under room temperature or refrigerated condition resulted in a similar increase in SPC at the end of 24 h, but storage of un-boiled milk even under refrigerated conditions increased SPC manifold after 24 h. Conclusion: The pasteurization process and hygienic conditions at the milk processing units along with cold chain of milk from suppliers to end users needs improvement. Currently, even pasteurized milk does not match the microbiological standards. It is recommended that milk should be boiled before consumption and refrigerated for storage to improve its shelf life/keeping quality.

SELECTION OF CITATIONS
SEARCH DETAIL