Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-158858

ABSTRACT

Potential probiotic strain for being health protectant especially intestinal illness is strain specific. This study investigated the selection of a new strain of probiotic of non-human origin and of human origin with the properties of intestinal protection against cancer. From the primary screening results, the human feces origin strains showed more bile salt tolerance than the fermented food origin strains. Whereas none of the human feces origin isolates could grow well in the acid condition. Lactobacillus plantarum CM4 was the new probiotic of non-human origin strain for this study. CM4 cells is said to tolerate and grow in 0.3% bile salt after 5 hours of incubation, at pH3 after 6 hours of incubation. This is in agreement with in vivo study for intestinal adherence ability of probiotic, a live CM4 cells was able to persist in mice small intestine and colon for 5 days. Live CM4 cells showed most effectiveness to bind 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) mutagen after 24 hours of incubation with 46.32% of binding ability while 144 hours of incubation with 85.34% of binding ability was the most effective for 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) mutagen. The significant difference (p<0.05) was found at all those time points. Moreover, the CM4 strain could degrade diphenylnitrosamine (DPN) better than 1-nitrosopyrrolidine (NPR) with dose response relationship activity. These imply that the CM4 strain could be the value added for the consuming pharmaceutical probiotic product based on scientific proof of its role in intestinal survival properties and cancer prevention through binding PhIP and IQ mutagen as well as degrading nitrosamine.

2.
Electron. j. biotechnol ; 13(5): 2-3, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591884

ABSTRACT

Lactobacillus plantarum DW3 produced antifungal compounds that inhibited the growth of Rhodotorula mucilaginosa DKA, contaminating yeast in fermented plant beverages (FPBs) and various potential human pathogens. Phenyllactic acid (PLA) identified by gas chromatography- mass spectrometry (GC-MS) was produced at 31 mg/L PLA in MRS medium and 5 mg/ml inhibited growth of the target yeast in vitro by 90 percent. Other inhibitors were also present but not specifically identified. Results of in vitro tests showed that DW3 also had probiotic properties as it survived various human biological barriers resistance to pH 3, bile salts, growth without vitamin B12 and the presence and absence of oxygen. Its inhibitory effect against food borne pathogenic bacteria and spoilage organisms was higher than that found for a commercial strain Lactobacillus casei R. An acute oral toxicity test on ICR mice at a high single dose of either 10(9) and 10(12) cells per mouse for 14 days showed that DW3 had no adverse effect on the general health status and there was no evidence of bacteremia. Mice fed DW3 had a reduced weight gain compared to the control. No significant difference (p > 0.05) was found for the spleen weight index (SWI) among the treatment and control groups whereas there was a significant difference (p < 0.05) for the liver weight ratio (LWR) in a group fed with 10(12) cells per mouse when compared with the control group.


Subject(s)
Animals , Mice , Antifungal Agents/pharmacology , Beverages/microbiology , Lactobacillus plantarum/chemistry , Rhodotorula , Antifungal Agents/chemistry , Chromatography, High Pressure Liquid , Fermentation , Food Microbiology , Gas Chromatography-Mass Spectrometry , Lactic Acid , Probiotics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL