Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Cancer Res Ther ; 2020 Jul; 16(3): 551-558
Article | IMSEAR | ID: sea-213858

ABSTRACT

Background: Head-and-neck squamous cell carcinoma (HNSCC) is one of the most common cancers that contribute to 20%–40% of all cancer incidences in India. Indian patients with HNSCC are mostly associated with tobacco usage and may have different genetic alterations compared with Western patients who are mostly associated with human papillomavirus infection. Polymorphisms in DNA repair genes are correlated to individuals' susceptibility and progression of cancer. XRCC1 is a DNA repair enzyme. Materials and Methods: In the present prospective study, Indian population of HNSCC patients (n = 45) were screened for Arg399Gln variant of XRCC1 using polymerase chain reaction-restriction fragment length polymorphism technique, prospective evaluation of the patients was done after treatment, and the single-nucleotide polymorphism results were correlated to survival functions. Results: Out of 45 patients, 28 patients were Arg/Arg, 12 patients were Arg/Gln, and 5 patients were Gln/Gln. Overall survival for the entire cohort and Arg/Arg, Arg/Gln, and Gln/Gln cohort was 36.3 (95% confidence interval [CI]: 33–39.5), 38.6 (95% CI: 35.3–41.9), 35.8 (95% CI: 28.6–42.9), and 26.4 (95% CI: 13.7–39.1) months (P = 0.097), respectively. Progression-free survival (PFS) of the entire patient cohort and Arg/Arg, Arg/Gln, and Gln/Gln cohort was 35.2 (95% CI: 31.4–39.1), 38.2 (95% CI: 34.3–42.1), 32.7 (95% CI: 26.2–39.1), and 22.3 (95% CI: 9.4–35.3) (P = 0.061), respectively. Conclusions: This study suggests that HNSCC patients with Gln substitution in place of Arg at position 399 (both homozygous and heterozygous) in XRCC1 protein have significantly inferior survival functions, higher recurrence rate, and events after radical treatment

2.
J Cancer Res Ther ; 2008 Apr-Jun; 4(2): 70-6
Article in English | IMSEAR | ID: sea-111390

ABSTRACT

AIMS AND OBJECTIVES: To study the geometric uncertainties in the treatment and evaluate the adequacy of the margins employed for planning target volume (PTV) generation in the treatment of focal conformal radiotherapy (CRT) for patients with brain tumors treated with different head support systems. MATERIALS AND METHODS: The study population included 11 patients with brain tumors who were to be treated with CRT. Contrast-enhanced planning CT scan (5-mm spacing and reconstructed to 2 mm) of brain were performed. Five patients were immobilized using neck support only (NR-only) and six patients had neck support with flexion (NRF), the form of immobilization being decided by the likely beam arrangements to be employed for that particular patient. The data was transferred to the planning system (CadPlan) where three-dimensional conformal radiation therapy was planned. Digitally reconstructed radiographs (DRRs) were created for the orthogonal portals with the fixed field sizes of 10 x 10 taken at the isocenter. Treatment verification was done using an amorphous silicon detector portal imaging device for using orthogonal portals and the DRR was used as a reference image. An image matching software was used to match the anatomical landmarks in the DRR and the portal imaging and the displacement of the portals in x, y axis and rotation were noted in the anteroposterior (AP) and lateral images. Electronic portal imaging was repeated twice weekly and an average of 8-14 images per patient was recorded. The mean deviation in all the directions was calculated for the each patient. Comparison of setup errors between the two head support systems was done. RESULTS: A total 224 images were studied in anterior and lateral portals. The patient group with NR-only had 100 images, while the NRF group had 124 images. The mean total error in all patients, NR-only group, and NRF group was 0.33 mm, 0.24 mm, and 0.79 mm in the mediolateral (ML) direction; 1.16 mm, 0.14 mm, and 2.22 mm in the AP direction; and 0.67 mm, 0.31 mm, and 0.96 mm in the superoinferior (SI) direction, respectively. The systematic error (S) in all patients, NR-only group, and NRF group in the ML direction was 0.31 mm, 0.28 mm, and 0.78 mm; 1.29 mm, 0.1 mm, and 2.24 mm in the AP direction; and 0.75 mm, 0.52 mm, and 0.94 mm in the SI direction, respectively. Random error (s) in all patients, NR-only group, and NRF group in the ML direction was 1.25 mm, 1.04 mm, and 1.41 mm; 1.31 mm, 1.36 mm, and 1.28 mm in the AP direction; 1.38 mm, 1.37 mm, and 1.39 mm in the SI direction, respectively. In all patients, the PTV margin with Stroom's formula in the NR-only and NRF group was 1.29 mm and 2.55 mm in the ML, 1.15 mm and 5.38 mm in the AP, and 2.0 mm and 2.85 mm in the SI directions, respectively. CONCLUSION: A PTV margin of 5 mm appears to be adequate; further reduction to 3 mm may be considered based on our results. Errors were significantly higher in the AP direction with NRF when compared to NR-only. Differential PTV margin may therefore be considered, with more margin in the AP and less in other directions, especially with the use of flexion devices.


Subject(s)
Brain Neoplasms/diagnostic imaging , Electronics , Equipment Design , Humans , Immobilization/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy, Conformal/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL