Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 28(2): 165-178, Mar.-Apr. 2018. tab, graf
Article in English | LILACS | ID: biblio-958859

ABSTRACT

ABSTRACT Chemical profile analyses of artichoke (Cynara scolymus L., Asteraceae) edible parts (fleshy receptacle, inner bracts) as well as roots are compared with the commercially usable leaf extract using HPLC-DAD-ESI-MS via chlorogenicacid as a marker. Overall polyphenolic constituents demonstrated by means of LC/MS profiling. The nutritional values and inulin contents of different assessed parts were investigated. The present study was designed to determine the effect of artichoke: leaves, bracts, receptacles and roots alcoholic extracts against CCl4-induced acute hepatotoxicity and hyperlipidemia in rats by means of histopathological and biochemical parameters. Serum liver enzymes levels of aspartate amino transferase, alanine amino transferase, alkaline phosphatase and lipid peroxidase content (malondialdehyde MDA) were estimated. Blood glutathione, total cholesterol, triacylglycerides and high density lipid level were estimated in plasma. The ethanol extract of roots, leaves, bracts and receptacles were standardized to (0.82 ± 0.02, 1.6 ± 0.06, 2.02 ± 0.16 and 2.4 ± 0.27 mg chlorogenic acid/100 mg extract), respectively. The receptacle showed the highest content of polyphenols and exhibits the highest antioxidant activity. HPLC analysis of inulin in the receptacles of globe artichoke revealed high content of inulin (41.47 mg/g) dry extract. All artichoke parts contain comparable vitamins and minerals. Artichokes receptacles extract when taken in dose of (500 mg/kg/day) reduce the lesion caused by CCl4 alone more than groups receiving silymarin. Bracts and leaves extract exert nearly the same effect.

2.
Rev. bras. farmacogn ; 26(3): 352-362, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-784291

ABSTRACT

Abstract Genus Aloe, Xanthorrhoeaceae, is well distributed all over Egypt, and many species have been used as medicinal plants; mainly reported to prevent cardiovascular diseases, cancer and diabetes. This study attempts to analyze the secondary metabolites in the methanol extract of the leaves of eight Aloe species; A. vera (L.) Burm. f., A. arborescens Mill., A. eru A. Berger, A. grandidentata Salm-Dyck, A. perfoliata L., A. brevifolia Mill., A. saponaria Haw. and A. ferox Mill. growing in Egypt. For this aim HPLC–DAD–MS/MS in negative ion mode was used. Although belonging to the same genus, the composition of each species presented different particularities. Seventy one compounds were identified in the investigated Aloe species, of which cis-p-coumaric acid derivaties, 3,4-O-(E) caffeoylferuloylquinic acid and caffeoyl quinic acid hexoside were the most common phenolic acids identified. Aloeresin E and isoaloeresin D, 2'-O-feruloylaloesin were the common anthraquinones identified. Lucenin II, vicenin II, and orientin were the common identified flavonoids in the investigated Aloe species. 6'-Malonylnataloin, aloe-emodin-8-O-glucoside, flavone-6,8-di-C-glucosides could be considered as chemotaxonomic markers for the investigated Aloe species. The eight Aloe species had significant anti-inflammatory activity, in addition to the significant acceleration of diabetic wound healing in rats following topical application of the methanol extracts of their leaves. This is the first simultaneous characterization and qualitative determination of multiple phenolic compounds in Aloe species from locally grown cultivars in Egypt using HPLC–DAD–MS/MS, which can be applied to standardize the quality of different Aloe species and the future design of nutraceuticals and cosmetic preparations.

SELECTION OF CITATIONS
SEARCH DETAIL