Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Medical Journal of Cairo University [The]. 2007; 75 (2 Supp.): 329-336
in English | IMEMR | ID: emr-145677

ABSTRACT

Thyroid hormone is one of the main factors that determine skeletal muscle contractile properties and the slow-twitch vs. fast twitch muscle fiber phenotype. Sarcoplasmic reticulum Ca[2+] ATPase is one of the principal regulators of Ca[2+] homeostasis in the skeletal muscle cells. It has been previously shown that modification of thyroid hormone levels has a profound impact on cardiac function, predominantly through a direct regulation of the sarcoplasmic reticulum protein levels. The present study aimed to investigate the effects of thyroid hormone treatment for 4 weeks on slow twitch soleus muscle of rats via recording twitch tension, time to peak tension, and half relaxation time and determination of soleus muscle SERCA1 expression. 24 male rats of local strain were randomly divided into 2 groups [n=12], control euthyroid group and hyperthyroid group in which hyperthyroidism was induced by intra peritoneal [i.p] injection of L-troxin 200microg/kg B.W./day, for 4 weeks. The in-situ isometric measures were done for soleus muscle and twitch tension [TT], [expressed as screen units], time to peak tension [TPT], and half relaxation time, 1/2 Rt [expressed in milliseconds] were recorded. SERCA1 protein expression in rat soleus muscle was measured. Thyroid hormone treatment significantly reduced time to peak tension and half relaxation time and increased twitch tension. These contractile changes were accompanied with significant increase in expression of SERCA1 in soleus muscle of rats. Thyroid hormone stimulates the expression of SERCA1 in slow soleus muscle in rats, thereby speeding-up the contraction-relaxation cycle and this increases energy expenditure and these effects of thyroid hormone participate at least in part to thermogenic action of thyroid hormone


Subject(s)
Male , Animals, Laboratory , Muscle Fibers, Slow-Twitch/physiology , Satellite Cells, Skeletal Muscle/physiology , Thyroxine/physiology , Homeostasis/physiology , Muscles/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL