Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 51-57, 2010.
Article in English | WPRIM | ID: wpr-727341

ABSTRACT

It was hypothesized that NaF induces calcium sensitization in Ca2+-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with beta-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to Ca2+ (decreased EC50 and increased E(max)). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in Ca2+-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and GTPgammaS-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a Ca2+-dependent manner in beta-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.


Subject(s)
Animals , Rats , Amides , Azepines , Calcium , Contracts , Escin , Indoles , Mesenteric Arteries , Naphthalenes , Passive Cutaneous Anaphylaxis , Pyridines , rho-Associated Kinases , Sodium , Sodium Fluoride
2.
The Korean Journal of Physiology and Pharmacology ; : 201-207, 2009.
Article in English | WPRIM | ID: wpr-728734

ABSTRACT

Our previous study demonstrated that flavone inhibits vascular contractions by decreasing the phosphorylation levelof the myosin phosphatase target subunit (MYPT1). In the present study, we hypothesized that flavone attenuates vascular contractions through the inhibition of the RhoA/Rho kinase pathway. Rat aortic rings were denuded of endothelium, mounted in organ baths, and contracted with either 30 nM U46619 (a thromboxane A2 analogue) or 8.0 mM NaF 30 min after pretreatment with either flavone (100 or 300 micrometer) or vehicle. We determined the phosphorylation level of the myosin light chain (MLC20), the myosin phophatase targeting subunit 1 (MYPT1) and the protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phophatase of 17-kDa (CPI17) by means of Western blot analysis. Flavone inhibited, not only vascular contractions induced by these contractors, but also the levels of MLC20 phosphorylation. Furthermore, flavone inhibited the activation of RhoA which had been induced by either U46619 or NaF. Incubation with flavone attenuated U46619-or NaF-induced phosphorylation of MYPT1(Thr855) and CPI17(Thr38), the downstream effectors of Rho-kinase. In regards to the Ca2+-free solution, flavone inhibited the phosphorylation of MYPT1(Thr855) and CPI17(Thr38), as well as vascular contractions induced by U46619. These results indicate that flavone attenuates vascular contractions, at least in part, through the inhibition of the RhoA/Rho-kinase pathway.


Subject(s)
Animals , Rats , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid , Baths , Blotting, Western , Contracts , Endothelium , Flavones , Myosin Light Chains , Myosin-Light-Chain Phosphatase , Myosins , Phosphorylation , Phosphotransferases , Protein Kinases , rho-Associated Kinases , Thromboxane A2 , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL