Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Rev. biol. trop ; 68(2)jun. 2020.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507682

ABSTRACT

Introducción: Las investigaciones sobre ontogenia de los soros, esporangios, paráfisis receptaculares y esporogénesis de los helechos leptosporangiados son escasas en la literatura científica. Objectivos: Describiry analizar la ontogenia de los soros, esporangios, paráfisis receptaculares y esporogénesis de Phymatosorus scolopendria. Métodos: Entre marzo y mayo 2017 (época lluviosa del año) se recolectaron frondas fértiles de P. scolopendria en el campus de la Universidad de Antioquia, Medellín-Colombia.Las frondas fértiles, en diferentes etapas del desarrollo se fijaron y procesaron de acuerdo a protocolos estándar para la inclusión y corte en parafina y resina. Las secciones de 0.5 µm obtenidas en resina se tiñeron con azul de Toluidina que tiñe diferencialmente paredes primarias y secundarias, resalta núcleos celulares, y esporopolenina y de manera secundaria tiñe polifenoles. Para descripciones detalladas, otros cortes se tiñeron con Safranina-azul de alciano que discrimina entre componentes de pared primaria, secundaria, núcleos, cutícula y polifenoles; Hematoxilina-azul de alciano para resaltar núcleos y paredes primarias y Fluoroglucinol ácido para detectar lignina. Las observaciones y registro fotográfico se efectuaron con microscopio fotónico. Para la observación y descripción con microscopía electrónica de barrido (MEB), los soros se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Resultados: Los soros son exindusiados, superficiales, vascularizados y de desarrollo mixto, se encuentran asociados a paráfisis receptaculares multicelulares uniseriadas. Durante el desarrollo del soro primero se diferencian las células epidérmicas receptaculares que darán origen a los esporangios y posteriormente las células que originarán a las paráfisis receptaculares. El esporangio es de tipo leptosporangio de pedicelos largos de una o dos filas de células. Los anillos de los esporangios muestran paredes secundarias con engrosamientos en forma de "U" ricos en lignina. La meiosis es simultánea y las tétradas de esporas se disponen de forma decusada o tetragonal. El tapete celular es inicialmente uniestratificado pero por una división mitótica de tipo periclinal, se torna biestratificado. Las células del estrato interno del tapete pierden la integridad estructural dando origen a un tapete plasmodial que invade los esporocitos en meiosis, el estrato externo persiste hasta la etapa de esporas maduras. En las diferentes etapas de desarrollo del esporodermo, primero se forma el exosporio, compuesto por esporopolenina, seguida del endosporio, conformado por celulosa, pectina y polisacáridos carboxilados y finalmente el perisporio. Los polifenoles fueron detectados, principalmente, en las vacuolas de las células de los esporangios, paráfisis y células receptaculares. Para el momento de la liberación de las esporas, tanto la capa externa del tapete celular como el plasmodial han degenerado por completo. En la cavidad esporangial se aprecian orbículas adyacentes a las esporas. Conclusiones: la ontogenia de los esporangios y esporogénesis de P. scolopendria es similar al descrito previamente para helechos leptosporangiados. Adicionalmente, se indica que las paráfisis receptaculares presentes en los soros de P. scolopendria tienen la función de protección de los esporangios durante las primeras etapas del desarrollo.


Introduction: Research about the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of leptosporangiate ferns are scarce in the scientific literature. Objectives: To describe and analyze the ontogeny of sori, sporangia, receptacular paraphyses and sporogenesis of Phymatosorus scolopendria. Methods: Fertile fronds of P. scolopendria were collected in the campus of the Universidad de Antioquia, Medellín, Colombia, during the months March and May (annual rain season) of 2017. The fertile fronds of the samples at different developmental stages were fixed and processed according to the standard protocols for embedding and sectioning in paraffin and resin. Sections of 0.5 µm obtained in resin were stained with Toluidine blue, which differentially stains primary and secondary walls, highlights the cell nucleus and sporopolenin and secondarily stains polyphenols. For detailed descriptions, additional sections were processed with Safranin-Alcian blue, allowing the distinction of components of primary and secondary walls, nuclei, cuticle and polyphenols; Hematoxylin-Alcian blue to enhance nuclei and primary walls and Phloroglucinol-HCl for lignin. Observations and photographic records were done with a photonic microscope. For the observations and descriptions with scanning electron microscopy (SEM), the sori were dehydrated with 2,2-dimethoxypropane, critical point dried and coated with gold. Results: The sori are exindusiate, superficial, vascularized and have mixed development; they are associated with uniseriate and multicellular receptacle paraphyses. During the development of the sori, the epidermal cells of the receptacle that will form the sporangia are the first differentiated followed by those forming the receptacle paraphyses. The sporangium is leptosporangiate, with long stalks formed by one or two cell rows. The annulus of the sporangia displays secondary walls with U-shaped thickenings rich in lignin. The meiosis is simultaneous and the spore tetrads are arranged in a decussate or tetragonal shape. The cellular tapetum is initially unistratified but becomes bistratified after a periclinal division. The cells of the internal strata of the cellular tapetum loose structural integrity giving rise to a plasmodial tapetum that invades the meiotic sporocytes. During the sporoderm development, the sporopollenin-composed exospore is the first formed followed by the endospore, composed by cellulose, pectin and carboxylated polysaccharides; the process ends with the perispore. Polyphenols were mainly detected on vacuoles in cells of the sporangium, paraphysis and receptacle. When the time comes for the spore maturation, the remnants of cellular and the plasmodial tapeta have fully degenerated. Abundant orbicles are seen near the spores in the sporangial cavity. Conclusions: The ontogeny of the sporangia and sporogenesis of P. scolopendria are similar to the previously described for leptosporangiate ferns. Furthermore, in P. scolopendria, the receptacle paraphyses of the sori have a role protecting the sporangium during the early development stages.

2.
Rev. biol. trop ; 68(2)jun. 2020.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507683

ABSTRACT

Introducción: Los aspectos histopatológicos e histoquímicos relacionados con el ataque de royas en plantas, así como su relación con los diferentes estados espóricos, son escasos en la literatura científica. Objetivos: Describir y analizar los aspectos histopatológicos e histoquímicos en Cymbopogon citratus y su relación con los diferentes estados espóricos de la roya Puccinia nakanishikii. Métodos: Durante abril y agosto 2013 se recolectaron hojas sanas e infectadas con Puccinia nakanishikii en la escarpa noroccidental de la meseta de Bucaramanga-Colombia. Las muestras con lesiones en diferentes etapas del desarrollo se fijaron y procesaron de acuerdo a protocolos estándar para la inclusión y corte en parafina y resina. Las secciones obtenidas en parafina (5-7 µm) fueron teñidas con Safranina-azul de Alcian y azul de Alcian-Hematoxilina. En tanto que las secciones obtenidas en resina (0.5 µm) se tiñeron con azul de Toluidina. También se elaboraron secciones a mano alzada para análisis de autofluorescencia. Las observaciones y registro fotográfico se efectuaron con microscopio fotónico y microscopía de epifluorescencia. Para observaciones con microscopía electrónica de barrido (MEB), las muestras se fijaron en Glutaraldehído, se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Resultados: Las hojas son por lo general hipostomáticas, con células epidérmicas largas y cortas formando filas paralelas y con la presencia de tricomas unicelulares espinosos y microtricomas. La superficie abaxial está cubierta por una densa capa de ceras epicuticulares y la adaxial está formada por agrupaciones de células buliformes y células epidérmicas de contorno rectangular o cuadrado. En el mesófilo no hay diferenciación entre parénquima de empalizada y esponjoso y su anatomía refleja el metabolismo C4 presente en esta gramínea. Se observó la formación de urediosoros y teliosoros hipófilos. Las urediosporas son la fase de reinfección y estas tienen de 4-5 poros germinativos ecuatoriales y su pared es equinulada. Las teliosporas son de pared lisa y de pedicelo persistente. Las urediosporas forman tubos de geminación por lo general sobre la superficie abaxial de la hoja y se desarrollan en dirección de los estomas, por donde penetran al interior del mesófilo. No se observó la presencia de apresorios. La epidermis se desprende y levanta por del desarrollo de las urediosporas y las paráfisis capitadas, a medida que el urediosoro crece. Con el avance de la infección, los tejidos fotosintéticos se desorganizan, pierden la autofluorescencia de la clorofila y las células sufren necrosis. Posteriormente, los tejidos vasculares se fragmentan y colapsan. Para este momento, la infección se ha extendido sobre toda la lámina foliar llevando a la muerte de la hoja y defoliación de la planta. Durante etapas avanzadas de la infección en los urediosoros se observaron picnidios, probablemente del hiperparásito Sphaerellopsis, asociados estrechamente a los tejidos infectados por la roya. Conclusiones: Puccinia nakanishikii se desarrolla sobre las hojas de Cymbopogon citratus produciendo urediosoros y teliosoros. Las urediosporas son la fase de reinfección, y las teliosporas solo se observaron en etapas avanzadas de la infección. La epidermis y los tejidos fotosintéticos son severamente afectados por la necrosis celular. En etapas avanzadas de la infección los tejidos vasculares se ven afectados.


Introduction: Histopathological and histochemical aspects linked to the attack of fungal rusts to plants, as well as its relation with the different spore stages are topics rather scarce in the scientific literature. Objective: To describe and analyze the histopathological and histochemical aspects of Cymbopogon citratus and its relation with the different stages of the spores from the rust fungi Puccinia nakanishikii. Methods: During the months April and August 2013, leaves healthy and infected by Puccinia nakanishikii were collected in the Northwestern scarp of the Bucaramanga-Colombia plateau. The samples with injuries on diverse developmental stages were fixated and processed according to the standard protocols for embedding and sectioning in paraffin and resin. Sections obtained from paraffin (5-7 µm) were stained with Safranin-Alcian blue and Alcian blue-Hematoxylin. On the other hand, sections obtained from resin (0.5 µm) were stained with Toluidine blue. Further, freehand sections were obtained for an autofluorescence analysis. The observations and photographic record were done via photonic microscope and epifluorescence microscope. For the observations via scanning electron microscopy (SEM), the samples were fixated in Glutaraldehyde, dehydrated with 2,2 dimethoxypropane, then desiccated to critical point and finally coated with gold. Results: The leaves are generally hypostomatic, with long and short epidermic cell forming parallel rows and showing unicellular prickle trichomes and micro-trichomes. The abaxial surface is covered by epicuticular wax forming a dense layer. The adaxial epidermis is formed by groupings of bulliform cells and epidermal cells with rectangular or squared contour. In the mesophyll, there is no differentiation between palisade and spongy parenchyma, its anatomy reflects the C4 metabolism. The formation of uredosori and teliosori both hypophyllous was observed. Urediniospores are the reinfecting agents phase, they have 4-5 equatorial germ pores and echinulate wall. Teliospores have smooth wall and a persistent pedicel. The urediniospores form a germ tube, generally on the abaxial leaf surface, these tubes develop towards the stomata reaching the mesophyll interior. No appressorium were observed. The epidermis limiting the uredosorus detaches due the development and pressure that exert both the urediniospores and capitate paraphyses. As the infection progresses, autofluorescense of the chlorophyll is lost and the cells undergo necrotic processes. Afterwards, the phloem collapses and the xylem becomes slightly disorganized. At this moment, the infection is extended along the whole leaf blade, resulting in the leaf death and the plant defoliation. On advanced stages of the infection, the uredosori showed pycnidia, probably belonging to the hyperparasite Sphaerellopsis, these structures were closely associated to the rust infected tissues. Conclusions: Puccinia nakanishikii develops on the leaves of Cymbopogon citratus producing uredosori and teliosori. Urediniospores are the reinfective stage, teliospores were only observed at late stages of the infection. The epidermis and photosynthetic tissue are severely affected by cell necrosis. The vascular tissues are deeply affected on the advances stages of the infection.

3.
Rev. biol. trop ; 67(6)dic. 2019.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507598

ABSTRACT

Introducción: Las investigaciones sobre la ontogenia de los esporangios y más aún, de la estructura y función de las escamas receptaculares presentes en los soros de algunas especies de helechos, son escasos en la literatura científica. Objetivos: Describir y analizar la ontogenia de los esporangios y las escamas receptaculares de Pleopeltis macrocarpa. Metodología: Durante marzo y mayo de 2017 se recolectaron frondas fértiles de esta especie en los troncos de árboles en el vivero El Edén de las Flores en el municipio de Rionegro, Antioquia-Colombia. Las muestras se fijaron y procesaron de acuerdo a protocolos estándar para la inclusión y corte en parafina y resina. Las secciones obtenidas en resina (0.5 µm) se tiñeron con azul de Toluidina. Para descripciones adicionales sobre la anatomía e histoquímica se aplicaron reactivos específicos para determinar paredes primarias, secundarias, núcleos, lignina, polifenoles, polisacáridos, sustancias pécticas y celulosa. Las observaciones y registro fotográfico se efectuaron con microscopio fotónico y microscopía de epifluorescencia. Para observaciones con microscopía electrónica de barrido (MEB), los soros se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Resultados: Los soros son superficiales, vascularizados y de desarrollo mixto y están cubiertos por escamas receptaculares que se desprenden con la maduración de los esporangios. El esporangio de tipo leptosporangio tiene pedicelos largos de paredes primarias, anillos de los esporangios muestran paredes secundarias con engrosamientos en forma de "U" ricos en lignina. Las células epidérmicas de los receptáculos originan a los esporangios y las escamas receptaculares. Los eventos de división mitótica de estas dos estructuras son inicialmente similares, pero luego divergen para la diferenciación reproductiva y vegetativa de estos dos órganos. La meiosis es simultánea y las tétradas de esporas se disponen de forma decusada o tetragonal. El tapete celular es inicialmente uniestratificado pero por una división mitótica se torna biestratificado. Las células del estrato interno del tapete se rompen dando origen a un tapete plasmodial. En el desarrollo del esporodermo, primero se forma el exosporio, compuesto por esporopolenina, luego el endosporio compuesto de celulosa, pectina y polisacáridos carboxilados y finalmente el perisporio. Los resultados histoquímicos y de epifluorescencia indican que las paredes celulares tanto de los esporangios como las escamas receptaculares inmaduras son de naturaleza celulósica. Al madurar, estas estructuras, así como las células de la pared del esporangio mantienen esta composición. En tanto que las células epidérmicas de los escudos de las escamas receptaculares maduras se caracterizan por mostrar cutícula engrosada. Los polifenoles están presentes durante todas las etapas de desarrollo de los esporangios y escamas receptaculares. Los almidones son abundantes en etapas tempranas del desarrollo en las células del receptáculo y primordios de los esporangios. Conclusiones: La ontogenia de los esporangios de P. macrocarpa es similar al descrito para helechos leptosporangidos. Las escamas receptaculares son estructuras principalmente de protección, su morfología y composición de las paredes celulares evitan la desecación o perdida de humedad en los esporangios durante las etapas lábiles de su desarrollo. Estos resultados concuerdan con la función de protección atribuida a las escamas peltadas pluricelulares presentes en las estructuras vegetativas de algunas especies de helechos y angiospermas tolerantes a la sequía.


Introduction: The ontogeny of sporangia and furthermore the structure and function of the receptacle scales showed by the sori of some fern species are topics scarcely represented in the scientific literature. Objectives: To describe and analyze the ontogeny of sporangia and receptacle scales of Pleopeltis macrocarpa. Methods: During March and April of 2017, fertile fronds of P. macrocarpa were collected from tree stems located in the plant nursery "El Edén de las flores", municipality of Rionegro, Antioquia, Colombia. The samples were fixed and processed according to the standard protocols for embedding and sectioning in paraffin and resin. Sections obtained in resin (0.5 µm) were stained with Toluidine blue. The additional descriptions of the anatomy and histochemistry required specific reagents, applied for the determination of primary walls, secondary walls, nuclei, lignin, polyphenols, polysaccharides, pectic substances and cellulose. The observations and photographic records were performed by photonic and epifluorescence microscopy. For the scanning electron microscopy (SEM) technique, the sori were dehydrated with 2,2- Dimethoxypropane, dried to critical point and coated with gold. Results: The sori are superficial, vascularized and have mixed development, covered by receptacle scales that detach as the sporangia reaches maturity. The leptosporangiate type sporangium have long stalks of primary walls, the annulus of the sporangia shows secondary walls with "U" shaped thickenings rich in lignin. The epidermal cells of the receptacle originate the sporangia and receptacle scales. The mitotic division events of these two structures are initially similar, but then diverge for the reproductive and vegetative differentiation of these two organs. Meiosis is simultaneous and the spore tetrads are arranged in a decussate or tetragonal shape. The cellular tapetum is initially unstratified but becomes bistratified by mitotic division. The inner layer of the tapetum cells break originating a plasmodial tapetum. During the sporoderm development, the first structure formed is the exospore, composed of sporopolenin, followed by the endospore composed of cellulose, pectin and carboxilated polysaccharides, and finally the perispore. The histochemistry and epifluorescence results indicate that both the sporangia and immature receptacle scales have cell walls of cellulosic. These structures as well as those of the sporangium wall cells maintain its composition during maturation. Whereas, the epidermal wall cells of the shields from the mature receptacle scales are characterized by thickened cuticle. The polyphenols are present during all the development stages of the sporangia and receptacle scales. Starch is abundant in the early stages of development of the receptacle cells and sporangial primordia. Conclusions: The ontogeny of the sporangia of P. macrocarpa is similar to the described for leptosporangiate ferns. The receptacle scales are mainly protective structures, its morphology and cell wall composition prevent desiccation or humidity loss of the sporangia during the labile stages of development. These results agree with the protective function attributed to the peltated pluricellular scales present in the vegetative structures of drought tolerant species of ferns and angiosperms.

4.
Rev. biol. trop ; 66(1): 178-188, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-897663

ABSTRACT

Abstract Acrostichum is a pantropical genus and has four species, two of which occur in the Neotropics, A. aureum and A. danaeifolium. In Mexico, A. danaeifolium grows further in land wet soils and is much more common than A. aureum, which is typically found in brackish or saline habitats near the coast, and is restricted to coastal saline mangrove communities. The purpose of this paper was to describe and compare the morphogenesis of the sexual phase of A. aureum and A. danaeifolium for systematic purposes. For this, spores of each species were sown in Petri dishes with agar, previously enriched with sterilized Thompson's medium. To avoid contamination and dehydration, the dishes were kept in transparent plastic bags under laboratory conditions. For the micro-morphological observation with SEM, the gametophyte development phases were fixed in FAA with 0.8 % sucrose for 24 h. Photomicrographs of spores, development stages of gametophytes and young sporophytes were observed with scanning electron microscope. Our results showed that the spores of both species are triletes, globose and positive photoblastic. Germination is Vittaria-type; the germinate filaments are short and uniseriate (5 to 7 cells), and prothallial development is Ceratopteris-type. The adult gametophytes of both species have asymmetrical wings. Adult gametophytes in culture are cordiform-spatulate. Antheridia have a broad basal cell, an annular cell, and an asymmetric opercular cell. Archegonia have short necks and four triangular cells at the mouth of the neck. The first leaf of the sporophyte is lobed, with dichotomous veins and anomocytic stomata. The gemmae are formed in adult gametophytes in both species. The development of the gametophyte of A. aureum, A. danaeifolium and A. speciosum share many similarities such as the development of a lateral meristem, asymmetric nature of the mature prothallus, lack of hairs on the prothallus, and undivided asymmetrical opercular antheridia morphology. The genus Acrostichum is the sister group of Ceratopteris, another genus of aquatic ferns; they differ in the antheridium morphology, Acrostichum has an asymmetric opercular cell and Ceratopteris shows an undivided cap cell, but the notable difference is the sporophyte morphology. Rev. Biol. Trop. 66(1): 178-188. Epub 2018 March 01.


Resumen Acrostichum es pantropical y tiene cuatro especies dos de las cuáles ocurren en el Neotrópico, A. aureum y A. danaeifolium. El género se encuentra típicamente en hábitats salobres o salinos cerca de la costa. También puede crecer más lejos en tierra en suelos húmedos. Acrostichum aureum está restringido a las comunidades de manglares salinos costeros. A. danaeifolium es mucho más común que A. aureum en México. El propósito de este trabajo es describir y comparar la morfogénesis de la fase sexual de A. aureum y A. danaeifolium. Las esporas de cada especie fueron sembradas en cajas de Petri, en agar previamente enriquecido con medio de Thompson esterilizado. Para evitar la contaminación y la deshidratación, las cajas se mantuvieron dentro de bolsas de plástico transparentes en condiciones de laboratorio. Para la observación micro-morfológica con el MEB, las fases de desarrollo del gametofito se fijaron en FAA con sacarosa al 0.8 % durante 24 h. Se observaron las esporas, fases de desarrollo de gametofitos y esporofitos jóvenes con un microscopio electrónico de barrido. Las esporas de ambas especies son triletes, globosas y fotoblásticas positivas. La germinación es tipo-Vittaria, los filamentos germinativos son cortos y uniseriados (5 a 7 células) y el desarrollo protálico es de tipo-Ceratopteris. Los gametofitos de ambas especies tienen alas asimétricas. Los gametofitos adultos en cultivo son cordiforme-espatulados. Los anteridios tienen una célula basal amplia, una célula anular y una célula opercular asimétrica. Los arquegonios tienen cuellos cortos y cuatro células triangulares en la boca del cuello. La primera hoja del esporofito es lobulada, con venación dicotómica y estomas anomocíticos. Las yemas se forman en gametofitos adultos en ambas especies. El desarrollo del gametofito de A. aureum, A. danaeifolium y A. speciosum comparten características tales como el desarrollo de un meristemo lateral, el protalo maduro de naturaleza asimétrica, ausencia de pelos en el protalo y anteridio con célula opercular asimétrica no dividida. Acrostichum es el grupo hermano de Ceratopteris, otro género de helecho acuático, que difieren en la morfología del anteridio, Acrostichum tiene una célula opercular asimétrica y Ceratopteris muestran una célula opercular no dividida.

5.
Rev. biol. trop ; 65(4): 1507-1526, Oct.-Dec. 2017. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-897639

ABSTRACT

Resumen Los oosporangios y anteridios de Charophyceae son los órganos de reproducción sexual femeninos y masculinos respectivamente. Estas estructuras se caracterizan por su complejidad morfológica y utilidad en taxonomía y sistemática. En el presente trabajo se describen los detalles estructurales y ultraestructurales de la gametogénesis en Chara hydropitys. El material fértil del alga se recolectó en una quebrada tributaria del Río Meléndez en la ciudad de Cali, Colombia (3º21´23´´N - 76º32´5.2´´W). Los especímenes fueron fijados y procesados de acuerdo a los protocolos estándar para la inclusión en resina y obtención de secciones finas que se colorearon con toluidina O (0.3-0.7 μm) para su observación en microscopía fotónica y secciones ultrafinas (60-90 nm) para microscopía electrónica de transmisión (MET). Además, se procesaron muestras para microscopio electrónico de barrido (MEB). Los oosporangios están recubiertos por las células espirales que forman de 10-12 circunvoluciones y terminan en cinco células coronulares. La pared de los oosporangios inmaduros está formada por dos capas que corresponden a la pared de las células espirales y de la oosfera. Al madurar la pared del oosporangio tiene seis capas adicionales, tres de las cuales son aportadas por la oospora y las tres restantes por las células espirales. La oosfera aumenta progresivamente de tamaño a medida que las células espirales crecen y se dividen. En el citoplasma de la oosfera inmadura no se aprecian inclusiones citoplasmáticas conspicuas, pero con la maduración el número de gránulos de almidón aumenta llegando a ocupar la mayor parte del volumen celular. En las células espirales del oosporangio maduro se observan numerosos cloroplastos con prominentes depósitos de almidón entre las lamelas tilacoidales y una vacuola que ocupa casi toda la célula. En las observaciones con MEB se aprecia que la pared externa de la oospora, sobre la zona de la fosa presenta microornamentaciones de tipo verrucado. En los anteridios maduros las células del escudo están fuertemente pigmentadas de color naranja por la presencia de numerosos plastoglóbulos entre las lamelas tilacoidales. De las células del capítulo secundario se desarrollan los filamentos espermatógenos que por divisiones mitóticas unidireccionales y sincrónicas forman los espermatocitos. A partir de estas células haploides por espermiogénesis se desarrollarán los anterozoides biflagelados. Los eventos subcelulares relacionados con estos procesos de división y diferenciación celular incluyen inicialmente cambios en la condensación de la cromatina, pérdida del nucléolo y mayor actividad de los dictiosomas. Posteriormente, el citoplasma se retrae y los orgánulos se alinean a lo largo del núcleo condensado y del aparato flagelar. Los anterozoides maduros emergen a través de un poro lateral de la pared de los espermatocitos. Todos los eventos descritos indican que los procesos de gametogénesis y los detalles estructurales de los gametos son por lo general características ampliamente conservadas en este grupo de algas.


Abstract InCharophyceae, the oosporangia and antheridia are the respective female and male structures of sexual reproduction. These organs are characterized by their morphological complexity and usefulness in taxonomy and systematics. Here we described the structural and ultraestructural details of Chara hydropitys gametogenesis. The fertile material from the algae was collected in a tributary stream of the Río Meléndez in Cali, Colombia (3º21´23´´N - 76º32´5.2´´W) in March 2011. The specimens were fixed and processed following the standard protocols for inclusion in resin. Thin sections (0.3-0.5 μm) were stained with toluidine O, and were observed by photonic microscopy, and additional ultrathin sections (60-90 nm) were observed by transmission electron microscopy (TEM); other samples were processed and observed by scanning electron microscopy (SEM). We found that the oosporangia are covered with spiral cells, forming 10-12 convolutions and ends in five coronula cells. The immature oosporangia wall is formed by two layers that correspond to the wall of the spiral cells and to the oosphere. In mature stages, the oosporangia wall is composed by six additional layers, three of them are provided by the oosphere and the other three are provided by the spiral cells. Oosphere size increases progressively while the spiral cells grow and divide. The cytoplasm of the immature oosphere does not exhibit conspicuous cytoplasmic inclusions, nevertheless, with the maturation, the number of starch granules increases, occupying most of the cell volume. In the spiral cells of the mature oosporangia we observed large number of chloroplast with starch accumulations, between thylakoid lamellae and a vacuole that occupies almost the entire cell. By using SEM it was possible to appreciate, that the external wall of the oospore, more accurately, on the fossa area, shows verrucose micro-ornamentations with verrucae elevations. In mature antheridia, shield cells are strongly pigmented orange due to the presence of a large number of plastoglobules between thylakoid lamellae. The spermatogenous filaments are developed from cells of the secondary capitulum; those, by unidirectional and sincronic mitotic divisions develop the spermatocytes. The biflagellate antherozoids are developed from the haploid cells by spermiogenesis. The subcellular events related with these division and differentiation processes, include first, chromatin condensation, loss of nucleoli and more activity in dictyosomes. Subsequently, retracts the cytoplasm and the organelles are aligned along the condensed nucleus and flagellar apparatus. Mature antherozoids emerge through a side wall pore of the spermatocytes. All the described events showed that the gametogenesis processes and the gametes structural details in general, are widely conserved in this algae group.

6.
Rev. biol. trop ; 62(3): 1161-1195, jul.-sep. 2014. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-753681

ABSTRACT

Studies on reproductive aspects, spore morphology and ultrastructure of Lycopodiaceae are not very common in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. In order to complete existing information, adding new and broader contributions on these topics, a comparative analysis of the sporogenesis ultrastructure, with emphasis on cytological aspects of the sporocyte coat development, tapetum, monoplastidic and polyplastidic meiosis, sporoderm ontogeny and ornamentation of the mature spores, was carried out in 43 taxa of eight genera of the Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (including Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea and Pseudolycopodiella growing in the Andes of Colombia and the Neotropics. For this study, the transmission electron microscopy (TEM) samples were collected in Cauca and Valle del Cauca Departments, while most of the spores for scanning electron microscopy (SEM) analysis were obtained from herbarium samples. We followed standard preparation procedures for spore observation by TEM and SEM. Results showed that the sporocyte coat is largely composed by primary wall components; the sporocyte develop much of their metabolic activity in the production of their coat, which is retained until the spores release; protective functions for the diploid cells undergoing meiosis is postulated here for this layer. The abundance of dictyosomes in the sporocyte cytoplasm was related to the formation and development of the sporocyte coat. Besides microtubule activity, the membrane of sporocyte folds, associated with electrodense material, and would early determine the final patterns of spore ornamentation. Monoplastidic condition is common in Lycopodium s.l., whereas polyplastidic condition was observed in species of Huperzia and Lycopodiella s. l.. In monoplastidic species, the tapetum presents abundant multivesicular bodies, while in polyplastidic species, the secretory activity of the tapetum is less intense. Sporoderm development is centripetal, exospore is the first formed layer, then the endospore and, if present, perispore is the final deposited layer. Adult spores of the Lycopodiaceae showed two patterns of ornamentation: negative or caviform (foveolate spores) and positive or muriform ornamentation, the latter with two subtypes (rugate and reticulate spores). The spores of Huperzia are characteristically foveolate, the rugate spores were found in a few species of Huperzia and in all of the Lycopodiella s. l. taxa studied, while Lycopodium s.l. spores bear reticulate ornamentation. Numerous ornamentation traits are diagnostic at the specific level. The types of ornamentation found do not support the recent extreme fragmentation of the family in several genera, but could match, a priori, with the idea of three subfamilies. The findings of sporogenesis, extremely similar in all taxa studied, point more to consider fewer genera, more comprehensive, than the recent, markedsplitting of the family. Rev. Biol. Trop. 62 (3): 1161-1195. Epub 2014 September 01.


Estudios sobre aspectos reproductivos, morfología y ultraestructura de las esporas de Lycopodiaceae no son abundantes en la literatura científica y constituyen información esencial para apoyar las relaciones taxonómicas y sistemáticas en el grupo. Con el fin de completar la información existente, añadiendo contribuciones nuevas y más amplias sobre estos temas, se realizó un análisis comparado de la ultraestructura de la esporogénesis, con énfasis en aspectos citológicos que tienen que ver con la formación de la cubierta de los esporocitos, el tapete, las meiosis monoplastidial y poliplastidial, la ontogenia del esporodermo y la ornamentación de las esporas maduras en 43 táxones de ocho géneros de Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (incluyendo Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea y Pseudolycopodiella que crecen en los Andes de Colombia y el Neotrópico. Para estudios con microscopía electrónica de trasmisión (MET) las muestras se recolectaron en los departamentos de Cauca y Valle del Cauca, mientras que la mayoría de las muestras para microscopía electrónica de barrido (MEB) provienen de material herborizado de colecciones. Para la observación de las muestras con MET y MEB se utilizaron protocolos estándar para el procesamiento de esporas. La cubierta de los esporocitos está formada por pared primaria; los esporocitos invierten gran parte de su actividad metabólica en la producción de esa cubierta, que es mantenida hasta la liberación de las esporas y tiene funciones de protección de las células que harán meiosis. La abundancia de dictiosomas en los esporocitos se relacionó con la formación y desarrollo de la cubierta. Además de la actividad de los microtúbulos, la presencia de sinuosidades y plegamientos asociados con material electro denso en la membrana de los esporocitos determinarían tempranamente los patrones de ornamentación de las esporas. La condición monoplastidial es común en Lycopodium s.l.y la poliplastidial se observó en Huperzia y Lycopodiella s. l. En especies monoplastidiales el tapete presenta abundantes cuerpos plurivesiculares, en las poliplastidiales la actividad secretora del tapete es menos intensa. El desarrollo del esporodermo es centrípeto, el exosporio se forma primero, seguido del endosporio y el perisporio, si está presente, se deposita de último. En las esporas adultas de Lycopodiaceae se encontraron dos patrones de ornamentación: negativo o caviforme (esporas foveoladas) y positivo o muriforme (esporas rugadas y reticuladas). Las esporas foveoladas son características de Huperzia; las rugadas de unas pocas especies de Huperzia y las especies de Lycopodiella s. l., mientras que las reticulada son típicas de Lycopodium s. l.. Numerosos caracteres de la ornamentación resultan diagnósticos en el nivel específico. Los tipos principales no apoyan la extrema fragmentación reciente de la familia en varios géneros, aunque podría coincidir, a priori, con la idea de tres subfamilias. Los hallazgos de la esporogénesis, extremadamente similar en todos los táxones estudiados, apuntan más a la unificación de los géneros en la familia que a su segregación.


Subject(s)
Lycopodiaceae/ultrastructure , Meiosis , Sporangia/embryology , Spores/growth & development , Colombia , Lycopodiaceae/classification , Lycopodiaceae/embryology , Microscopy, Electron, Scanning , Sporangia/ultrastructure , Spores/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL