Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Journal of Lipid and Atherosclerosis ; : 189-200, 2023.
Article in English | WPRIM | ID: wpr-1001295

ABSTRACT

Objective@#Hypercholesterolaemia transforms macrophages into lipid-laden foam cells in circulation, which can activate the immune response. Compromised autophagy and inflammatory cytokines are involved in the pathogenesis and progression of metabolic diseases.The aim of this study was to identify the role of autophagy as a modulator of the inflammatory response and cytotoxicity in macrophages under hypercholesterolaemic conditions. @*Methods@#High cholesterol-induced cytokine secretion and alteration of autophagyassociated molecules were confirmed by cytokine array and western blot analysis, respectively. To confirm whether autophagic regulation affects high cholesterol-induced cytokine release and cytotoxicity, protein levels of autophagic molecules, cell viability, and cytotoxicity were measured in cultured macrophages treated autophagy enhancers. @*Results@#Cholesterol treatment increased cytokine secretion, cellular toxicity, and lactate dehydrogenase release in lipopolysaccharide (LPS)-primed macrophages. Concomitantly, altered levels of autophagy-related molecules were detected in LPS-primed macrophages under hypercholesterolaemic conditions. Treatment with autophagy enhancers reversed the secretion of cytokines, abnormally expressed autophagy-associated molecules, and cytotoxicity of LPS-primed macrophages. @*Conclusion@#Autophagy enhancers inhibit inflammatory cytokine secretion and reduce cytotoxicity under metabolic disturbances, such as hypercholesterolaemia. Modulation of autophagy may be a novel approach to control the inflammatory response observed in metabolic diseases.

2.
Anesthesia and Pain Medicine ; : 19-27, 2020.
Article | WPRIM | ID: wpr-830307

ABSTRACT

Background@#Bile duct ligation (BDL) has been used for experimental research on hepatic encephalopathy (HE) caused by chronic liver disease. However, little research has been done on a BDL model in C57BL/6 mouse. Therefore, we evaluated the suitability of a BDL model in C57BL/6 mouse for the study of HE and determined which behavioral tests are appropriate for the identification of HE in this model. @*Methods@#Twelve to fourteen-week-old male C57BL/6 mice were randomly assigned to either sham group or BDL group. Histological changes in liver were confirmed by hematoxylin/ eosin and Masson’s trichrome staining. Liver function alterations were detected by alanine aminotransferase (ALT) and ammonia levels. To identify behavioral changes, open field, elevated plus maze, novel object recognition, and passive avoidance tests were performed. @*Results@#Inflammatory liver injury and fibrosis were observed 14 days after BDL. ALT and ammonia levels were significantly higher in BDL group than in sham group. There were no differences in general locomotor activity or anxiety between the groups. No difference was observed between these two groups in the novel object recognition test, but BDL group showed significant learning/memory impairment in the passive avoidance test compared to sham group. @*Conclusions@#Fourteen days of BDL in 12–14-week-old male C57BL/6 mice is a clinically relevant model for HE, as these mice have liver fibrosis with impaired liver function, hyperammonemia, and learning/memory impairment. Passive avoidance can be used as the major behavioral test in this model of HE.

3.
Biomolecules & Therapeutics ; : 149-157, 2017.
Article in English | WPRIM | ID: wpr-32630

ABSTRACT

The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of interleukin-1β and tumor necrosis factor-α at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia.


Subject(s)
Animals , Humans , Male , Rats , Administration, Intranasal , Blood-Brain Barrier , Brain , Brain Ischemia , Cytokines , Infarction, Middle Cerebral Artery , Interleukin 1 Receptor Antagonist Protein , Interleukin-1 , Ischemic Attack, Transient , Methods , Microglia , Models, Animal , Necrosis , Neurons , Neuroprotection , Rats, Sprague-Dawley , Stroke
4.
Korean Journal of Aerospace and Environmental Medicine ; : 28-30, 1997.
Article in Korean | WPRIM | ID: wpr-180391

ABSTRACT

No abstract available.


Subject(s)
Occupational Health Nursing , Occupational Health
SELECTION OF CITATIONS
SEARCH DETAIL