Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Electrolytes & Blood Pressure ; : 38-45, 2021.
Article in English | WPRIM | ID: wpr-914228

ABSTRACT

Pressure natriuresis refers to the concept that increased renal perfusion pressure leads to a decrease in tubular reabsorption of sodium and an increased sodium excretion. The set point of blood pressure is the point at which pressure natriuresis and extracellular fluid volume are in equilibrium. The term "abnormal pressure natriuresis" usually refers to the expected abnormal effect of a certain level of blood pressure on sodium excretion. Factors that cause abnormal pressure natriuresis are known. Sympathetic nerve system, genetic factors, and dietary factors may affect an increase in renal perfusion pressure. An increase in renal perfusion pressure increases renal interstitial hydrostatic pressure (RIHP). Increased RIHP affects tubular reabsorption through alterations in tight junctional permeability to sodium in proximal tubules, redistribution of apical sodium transporters, and/or release of renal autacoids. Renal autocoids such as nitric oxide, prostaglandin E2, kinins, and angiotensin II may also regulate pressure natriuresis by acting directly on renal tubule sodium transport. In addition, inflammation and reactive oxygen species may mediate pressure natriuresis. Recently, the use of new drugs associated with pressure natriuretic mechanisms, such as angiotensin receptor neprilysin inhibitor and sodium glucose co-transporter 2 inhibitors, has been consistently demonstrated to reduce mortality and hypertension-related complications. Therefore, the understanding of pressure natriuresis is gaining attention as an antihypertensive strategy. In this review, we provide a basic overview of pressure natriuresis to the target audience of nephrologists.

2.
Korean Journal of Dental Materials ; (4): 11-20, 2019.
Article in Korean | WPRIM | ID: wpr-750280

ABSTRACT

Objective of this study was to compare the color stability, mechanical and chemical properties of three different types of temporary crown resins. Commercially available powder-liquid (Group PL), light-cured (Group LC) and auto-mix syringe (Group AM) types' temporary crown resins were used as experimental groups for each of the evaluation. All the test groups were evaluated after 1 day and 7 days of immersion in various staining solutions. The colors of all groups before and after storage in the staining solutions were measured by a spectrophotometer based on CIE Lab system, and the color differences (ΔE(*)) thereby calculated. Micro hardness test was performed before water storage and aging after 7 days at 37 ℃. In addition, flexural strength, water sorption and solubility tests were performed according to international standard, ISO 10477. All experimental groups showed significant color change in staining solutions when compared to those stored in the control solution (distilled water) (p PL > LC (p<0.05). Water sorption and solubility increased in the following order: AM < PL < LC (p<0.05). The results of this study would provide useful information when choosing temporary crown resin types in various clinical situations.


Subject(s)
Aging , Crowns , Hardness Tests , Immersion , Solubility , Syringes , Water
SELECTION OF CITATIONS
SEARCH DETAIL