Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Journal of Environmental Science and Technology. 2009; 6 (4): 563-570
in English | IMEMR | ID: emr-100268

ABSTRACT

Prediction of groundwater inflow into mining excavations is very important in order to design an effective dewatering system to keep the mine workings dry and create prolonged cone of depression. The effects of anisotropy ratio and bedding on the hydraulic head and drawdown curves of a dewatering test carried out in a fully penetrating well in a confined aquifer have been investigated. An existing numerical finite element model has been used to perform the simulations. The results of the numerical model are compared to those from analytical Jacob and Lohman solution for estimating hydraulic heads and drawdown curves, It was found that the anisotropy ratio and bedding should not have a significant effect on drawdown and the quantity of inflow into a confined aquifer. It was further found that taking the simultaneous effects of anisotropy and bedding into account reduces the differences in the results of analytical and numerical methods. Comparison of the field data and model predictions showed that, the modelling results for a three layer anisotropic aquifer fit well to the field data than those results obtained fur a single layer aquifer and the relative error decreased from 4.81% to 2.98%


Subject(s)
Anisotropy , Finite Element Analysis
2.
International Journal of Environmental Science and Technology. 2008; 5 (4): 517-526
in English | IMEMR | ID: emr-86954

ABSTRACT

The waste produced by coal washing process produces many environmental problems. In this study, the pollution problems associated with the waste produced by Alborz Sharghi Coal Washing Plant was investigated by mathematical modeling. The study area is located at 11 km. to Razmjah coal region and 45 km. to Tehran-Mashhad road in the north part od Iran. To achieve the goal, a few samples were taken from different depths at three points on the waste dump in order to investigate pyrite oxidation and pollution generation. The samples were then analysed, using an AA-670 Shimadzu atomic absorption to determine the fraction of pyrite remained within the waste particles. A numerical finite volume model using Phoenics package has been developed to simulate pyrite oxidation and pollution generation from the Alborz Sharghi coal washing waste dump. The pyrite oxidation reaction is described by the shrinking-core model. Gaseous diffusion is the main mechanism for the transport of oxygen through the waste. The results of numerical modelling were compared with the field observations and close agreement was achieved. A simple mathematical model incorporating advection and hydrodynamic dispersion processes was also presented in order to verify the results of geophysical time-laps method showing transportation of the pollutants through the downstream of the waste dump. Both mathematical model and geophysical time-laps method are agreed in the identification of pollutant transport emanated from the waste dump. The results of such investigations can be used for designing an effective environmental management program


Subject(s)
Iron , Sulfides , Water Pollutants, Chemical , Coal , Industrial Waste , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL