Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Pharmaceutical Journal ; (24): 46-51, 2018.
Article in Chinese | WPRIM | ID: wpr-858467

ABSTRACT

OBJECTIVE: To prepare and optimize meloxicam nanosuspensions fast dissolving sublingual films (MLX-NS-FDSFs) and to evaluate its in vitro dissolution characteristics. METHODS: Meloxicam nanosuspensions (MLX-NS) were prepared by pH-dependent dissolving-precipitating/high speed shearing method and then transformed into fast dissolving sublingual films (FDSFs). The formulations of MLX-NS-FDSFs were optimized by employing Box-Behnken design-response surface methodology with the amount of HPMC-E30, PEG-400 and MLX-NS as investigation factors, and particle size of reconstituted nanoparticles from MLX-NS-FDSFs, disintegration time and stretch length as indexes. The morphology, content uniformity and in vitro dissolution of the optimal formulation were also evaluated. RESULTS: The MLX-NS-FDSFs prepared by optimized formulation (35 mg·mL-1 HPMC-E30, 40 mg·mL-1 PEG-400, 10 mL MLX-NS) could fast disintegrate in (26.08±1.76) s, the tensile length was (1.51±0.13) mm, and the particle size of reconstituted nanoparticles from MLX-NS-FDSFs was (186.4±6.3) nm. There was a little deviation between the theoretically predicted value and the measured value. It showed that this model had a good prediction. Morphological analysis showed that well-dispersed MLX nanoparticles embedded in MLX-NS-FDSFs. The conformity of drug content was up to standard. MLX could be released in vitro as much as (91.75±8.05)% within five minutes. CONCLUSION: Using Box-Behnken design and response surface method to optimize MLX-NS-FDSFs is effective and feasible. MLX-NS-FDSFs can significantly increase the cumulative dissolution of MLX.

2.
China Journal of Chinese Materia Medica ; (24): 3232-3238, 2016.
Article in Chinese | WPRIM | ID: wpr-307172

ABSTRACT

To prepare tanshinone ⅡA loaded nanostructured lipid carrier (Tan ⅡA-NLC), and study its in vitro transdermal permeation characteristics. The Tan ⅡA-NLC was prepared by high pressure homogenization technology and optimized by Box-Behnken design-response surface method, and it was characterized in terms of morphology, particle size, zeta potention, et al. The transdermal permeation of Tan ⅡA-NLC was evaluated by using Franz diffusion cells. The results showed that, the optimal formulation was as follows: drug/lipid materials ratio 88, GMS/MCT ratio 2, emulsifier concentration 1%, average particle size (182±14) nm, polydispersity index PDI (0.190 6±0.024 5), zeta potential (-27.8± 5.4) mV, encapsulation efficiency EE (86.44%±9.26%) and drug loading DL (0.98%±0.18%), respectively. The in vitro transdermal permeation results showed that as compared with Tan ⅡA solution, Tan ⅡA-NLC had lower transdermal permeation amount after applying drug for 24 h, but its retention in the epidermis was 3.18 times that of solution. These results indicated that the prepared Tan ⅡA-NLC could effectively increase the regention of Tan ⅡA in the epidermis, and had a broad application prospect.

SELECTION OF CITATIONS
SEARCH DETAIL