Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 406-423, 2022.
Article in English | WPRIM | ID: wpr-929303

ABSTRACT

Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin (DOX)-loaded silk fibroin-based nanoparticles (NPs) with surface functionalization by photosensitizer (N770). The obtained nanotheranostics (N770-DOX@NPs) had desirable particle size (157 nm) and negative surface charge (-25 mV). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli (acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared (NIR) fluorescence imaging, photothermal imaging, and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumor retardation effect among all treatment groups based on tumor-bearing mouse models and a patient-derived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imaging-guided mitochondrial phototherapy (photothermal therapy and photodynamic therapy) and chemotherapy. Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.

2.
Chinese Journal of Biotechnology ; (12): 435-444, 2019.
Article in Chinese | WPRIM | ID: wpr-771363

ABSTRACT

Genes belonging to the elongases of very long chain fatty acid (ELOVL) family affect many physiological functions in organism. In this paper, Bmelo424 gene, a member of the ELOVL family in silkworm, was cloned and its ORF was 558 bp. Its protein sequence was predicted to have four transmembrane domains, six serine phosphorylation sites, eight threonine phosphorylation sites and four tyrosine phosphorylation sites, and its subcellular localization was in the endoplasmic reticulum. Secondary structure analysis showed that the percentage of alpha-helix and beta-strand was 26.7% and 20% respectively. The results of fluorescence quantitative PCR showed that Bmelo424 gene was expressed in all tissues of silkworm, especially with the highest expression in head. By heterologous expression of Bmelo424 gene in Saccharomyces cerevisiae, the effect of Bmelo424 gene on fatty acid elongation was studied. GC-MS results indicated that the fatty acid content of C16:1n-7 in S. cerevisiae with pYES2-Bmelo424 recombinant plasmid increased significantly, whereas the content of C16:0, C18:0 and C18:1n-9 decreased. The results of temperature stress revealed that Bmelo424 gene could improve the low temperature adaptability of S. cerevisiae, but its high temperature adaptability decreased. This provides a reference for exploring the function of Bmelo424 gene in silkworm.


Subject(s)
Animals , Acetyltransferases , Amino Acid Sequence , Bombyx , Cloning, Molecular , Fatty Acids , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL