Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 50(7): e5901, 2017. tab
Article in English | LILACS | ID: biblio-951703

ABSTRACT

We aimed to quantify the penetration of ciprofloxacin, ofloxacin, and moxifloxacin into the cornea and aqueous humor of cadaver eyes. A total of 60 enucleated eyes, not eligible for corneal transplantation, were divided into three groups and immersed in commercial solutions of 0.3% ciprofloxacin, 0.3% ofloxacin, or 0.5% moxifloxacin for 10 min. Whole corneas and samples of aqueous humor were then harvested and frozen, and drug concentrations analyzed by liquid chromatography tandem mass spectrometry. The mean corneal concentration of moxifloxacin was twice as high as ofloxacin, and the latter was twice as high as ciprofloxacin. The mean concentration of moxifloxacin in the aqueous humor was four times higher than the other antibiotics, and the mean concentrations of ciprofloxacin and ofloxacin were statistically similar. The amount of drug that penetrated the anterior chamber after a 10-min immersion was far below the safe limit of endothelial toxicity of each preparation. Moxifloxacin demonstrated far superior penetration into the cornea and anterior chamber of cadaver eyes compared to ciprofloxacin and ofloxacin. One should not expect endothelial toxicity with the commercial eye drops of ciprofloxacin, ofloxacin, and moxifloxacin that reach the anterior chamber through the cornea.


Subject(s)
Humans , Aqueous Humor/drug effects , Ofloxacin/pharmacokinetics , Ciprofloxacin/pharmacokinetics , Cornea/drug effects , Fluoroquinolones/pharmacokinetics , Cadaver , Eye Enucleation , Bayes Theorem , Moxifloxacin
2.
Braz. j. med. biol. res ; 47(6): 470-477, 06/2014. tab, graf
Article in English | LILACS | ID: lil-709452

ABSTRACT

The purpose of this investigation was to analyze the proliferative behavior of rabbit corneal epithelium and establish if any particular region was preferentially involved in epithelial maintenance. [3H]-thymidine was injected intravitreally into both normal eyes and eyes with partially scraped corneal epithelium. Semithin sections of the anterior segment were evaluated by quantitative autoradiography. Segments with active replication (on) and those with no cell division (off) were intermingled in all regions of the tissue, suggesting that the renewal of the epithelial surface of the cornea followed an on/off alternating pattern. In the limbus, heavy labeling of the outermost layers was observed, coupled with a few or no labeled nuclei in the basal stratum. This suggests that this region is a site of rapid cell differentiation and does not contain many slow-cycling cells. The conspicuous and protracted labeling of the basal layer of the corneal epithelium suggests that its cells undergo repeated cycles of replication before being sent to the suprabasal strata. This replication model is prone to generate label-retaining cells. Thus, if these are adult stem cells, one must conclude that they reside in the corneal basal layer and not the limbal basal layer. One may also infer that the basal cells of the cornea and not of the limbus are the ones with the main burden of renewing the corneal epithelium. No particular role in this process could be assigned to the cells of the basal layer of the limbal epithelium.


Subject(s)
Animals , Male , Rabbits , Epithelium, Corneal/anatomy & histology , Epithelium, Corneal/physiology , Limbus Corneae/cytology , Stem Cells/physiology , Autoradiography , Cell Proliferation , Cell Movement/physiology , Cornea/anatomy & histology , Eye/anatomy & histology , Intravitreal Injections , Thymidine , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL