Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Ophthalmology ; (12): 641-645, 2023.
Article in Chinese | WPRIM | ID: wpr-990894

ABSTRACT

Objective:To prepare water-soluble graphene-based itraconazole antifungal eye drops and evaluate its antifungal activity against Fusarium solani. Methods:By oxidative modification of graphene and modification of polymer materials, water-soluble graphene oxide-modified polyethylene glycol (GO-PEG) composites were prepared.The composites were characterized by scanning electron microscopy, zeta potential, and Raman spectroscopy.The antifungal drug itraconazole was loaded onto the GO-PEG vector by solvent evaporation method, and itraconazole eye drops were obtained.The drug loading of itraconazole eye drops was measured using a UV and visible spectrophotometer.The antifungal effect in vitro was assessed by the microdilution method and light microscopy. Results:Scanning electron microscopy showed that GO-PEG had a two-dimensional nanosheet structure and many wrinkles.The zeta potential of GO-PEG was -42.40 mV.Raman spectroscopy showed that the ID/ IG of GO-PEG was 1.003.Using the water-soluble GO-PEG vector, a maximum itraconazole concentration of 10 mg/ml was achieved with a 10 000-fold increase in apparent solubility (10 mg/ml vs 0.001 mg/ml). The antifungal results showed that the minimum inhibitory concentration of itraconazole eye drops against Fusarium solani was approximately 1.88 μg/ml, but the GO-PEG vector has no significant antifungal activity against Fusarium solani. Conclusions:GO-PEG achieves effective loading and solubilization of itraconazole, demonstrating an in vitro inhibitory effect on Fusarium solani.

2.
Chinese Journal of General Practitioners ; (6): 712-713, 2016.
Article in Chinese | WPRIM | ID: wpr-502071
SELECTION OF CITATIONS
SEARCH DETAIL