Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Western Pacific Surveillance and Response ; : 68-70, 2018.
Article in English | WPRIM | ID: wpr-777697

ABSTRACT

Abstract@#As we observe the 100th anniversary of the 1918 influenza pandemic, we are reminded of the importance of preparedness for and adequate response to influenza, and the critical role of influenza surveillance through laboratory detection. Influenza virus detection has helped drive the development of diagnostic and virology laboratories in the World Health Organization (WHO) Western Pacific Region over the last 10–15 years, at the same time strengthening their capacity to detect and respond to infectious threats beyond influenza. Such cross-cutting approaches are advocated under the Asia Pacific Strategy for Emerging Diseases and Public Health Emergencies (APSED III),1 which continues to guide Member States in advancing implementation of the International Health Regulations, 20052 and has a dedicated focus on strengthening laboratory capacities.

2.
Western Pacific Surveillance and Response ; : 53-67, 2018.
Article in English | WPRIM | ID: wpr-777696

ABSTRACT

Abstract@#Since the first confirmed human infection with avian influenza A(H5N1) virus was reported in Hong Kong SAR (China) in 1997, sporadic zoonotic avian influenza viruses causing human illness have been identified globally with the World Health Organization (WHO) Western Pacific Region as a hotspot. A resurgence of A(H5N1) occurred in humans and animals in November 2003. Between November 2003 and September 2017, WHO received reports of 1838 human infections with avian influenza viruses A(H5N1), A(H5N6), A(H6N1), A(H7N9), A(H9N2) and A(H10N8) in the Western Pacific Region. Most of the infections were with A(H7N9) (n = 1562, 85%) and A(H5N1) (n = 238, 13%) viruses, and most (n = 1583, 86%) were reported from December through April. In poultry and wild birds, A(H5N1) and A(H5N6) subtypes were the most widely distributed, with outbreaks reported from 10 and eight countries and areas, respectively. Regional analyses of human infections with avian influenza subtypes revealed distinct epidemiologic patterns that varied across countries, age and time. Such epidemiologic patterns may not be apparent from aggregated global summaries or country reports; regional assessment can offer additional insight that can inform risk assessment and response efforts. As infected animals and contaminated environments are the primary source of human infections, regional analyses that bring together human and animal surveillance data are an important basis for exposure and transmission risk assessment and public health action. Combining sustained event-based surveillance with enhanced collaboration between public health, veterinary (domestic and wildlife) and environmental sectors will provide a basis to inform joint risk assessment and coordinated response activities.

3.
Western Pacific Surveillance and Response ; : 27-30, 2017.
Article in English | WPRIM | ID: wpr-6810

ABSTRACT

Arboviruses continue to pose serious public health threats in the World Health Organization (WHO) Western Pacific Region. As such, laboratories need to be equipped for their accurate detection. In 2011, to ensure test proficiency, the WHO Regional Office for the Western Pacific piloted an external quality assessment (EQA) programme for arbovirus diagnostics. By 2016, it had grown into a global programme with participation of 96 laboratories worldwide, including 25 laboratories from 19 countries, territories and areas in the Region. The test performance of the 25 laboratories in the Region in 2016 was high with 23 (92%) reporting correct results in all specimens for dengue and chikungunya viruses. For Zika virus, 18 (72%) of the 25 laboratories reported correct results in all specimens, while seven (28%) demonstrated at least one error. When comparing iterations of this EQA programme in the Region between 2013 and 2016, the number of participating laboratories increased from 18 to 25. The first round only included dengue virus, while the latest round additionally included chikungunya, Zika and yellow fever viruses. Proficiency for molecular detection of dengue virus remained high (83–94%) over the four-year period. The observed proficiency for arbovirus diagnostics between 2013 and 2016 is an indicator of laboratory quality improvement in the Region.

4.
Western Pacific Surveillance and Response ; : 26-34, 2016.
Article in English | WPRIM | ID: wpr-6655

ABSTRACT

OBJECTIVE: To conduct an external quality assessment (EQA) of dengue and chikungunya diagnostics among national-level public health laboratories in the Asia Pacific region following the first round of EQA for dengue diagnostics in 2013. METHODS: Twenty-four national-level public health laboratories performed routine diagnostic assays on a proficiency testing panel consisting of two modules. Module A contained serum samples spiked with cultured dengue virus (DENV) or chikungunya virus (CHIKV) for the detection of nucleic acid and DENV non-structural protein 1 (NS1) antigen. Module B contained human serum samples for the detection of anti-DENV antibodies. RESULTS: Among 20 laboratories testing Module A, 17 (85%) correctly detected DENV RNA by reverse transcription polymerase chain reaction (RT-PCR), 18 (90%) correctly determined serotype and 19 (95%) correctly identified CHIKV by RT-PCR. Ten of 15 (66.7%) laboratories performing NS1 antigen assays obtained the correct results. In Module B, 18/23 (78.3%) and 20/20 (100%) of laboratories correctly detected anti-DENV IgM and IgG, respectively. Detection of acute/recent DENV infection by both molecular (RT-PCR) and serological methods (IgM) was available in 19/24 (79.2%) participating laboratories. DISCUSSION: Accurate laboratory testing is a critical component of dengue and chikungunya surveillance and control. This second round of EQA reveals good proficiency in molecular and serological diagnostics of these diseases in the Asia Pacific region. Further comprehensive diagnostic testing, including testing for Zika virus, should comprise future iterations of the EQA.

5.
Western Pacific Surveillance and Response ; : 44-47, 2016.
Article in English | WPRIM | ID: wpr-6647

ABSTRACT

On 1 February 2016, the World Health Organization (WHO) declared that clusters of microcephaly cases and other neurological disorders occurring in Zika virus (ZIKV)-affected areas constituted a public health emergency of international concern. Increased surveillance of the virus, including the requirement for laboratory confirmation of infection, was recommended. The WHO Regional Office for the Western Pacific therefore initiated a rapid survey among national-level public health laboratories in 19 countries and areas to determine regional capacity for ZIKV detection. The survey indicated that 16/19 (84%) countries had capacity for molecular detection of ZIKV while others facilitated testing through referral. These results suggest that robust laboratory capacity is in place to support ZIKV surveillance in the Western Pacific Region.

SELECTION OF CITATIONS
SEARCH DETAIL