Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 25(3): 307-311, May-June 2015. ilus
Article in English | LILACS | ID: lil-757436

ABSTRACT

AbstractThe oil extracted by cold pressing unroasted coffee beans, known as green coffee oil, has been widely used for cosmetic purposes. The objective of this work was to prepare and characterize microcapsules containing green coffee oil and to verify its antioxidant activity under the effect of light, heat and oxygen. The encapsulating material was arabic gum and the microcapsules were obtained by spray drying an oil-in-water emulsion containing green coffee oil. The characterization of the microcapsules was performed by laser diffraction, scanning electron microscopy, differential scanning calorimetry and the antioxidant activity. The antioxidant activity was determined by a modified active oxygen method with light irradiation, heating and oxygen flux. The microparticles were effectively produced by the proposed spray drying method, which resulted in green coffee oil loads of 10 and 30%. The morphological evaluation of microcapsules showed spherical shape with smooth and non-porous surfaces, demonstrating the adequacy of arabic gum as encapsulating material. Calorimetric analysis of individual components and microcapsules with 10 and 30% green coffee oil showed diminished degradation temperatures and enthalpy, suggesting a possible interaction between arabic gum and green coffee oil. The antioxidant activities for pure green coffee oil and its microcapsules with loads of 10 and 30% showed high activity when compared to the reference antioxidant alfa-tocopherol. Microcapsules containing 10 and 30% of oil showed 7-fold and 3-fold increase in antioxidant activity when compared to pure green coffee oil. The new method for antioxidant activity determination proposed here, which applies heat, light and oxygen simultaneously, suggests a high improvement in encapsulated green coffee oil when compared to this active alone. The results showed herein indicate a promising industrial application of this microencapsulated green coffee oil.

2.
Rev. bras. farmacogn ; 23(1): 94-100, Jan.-Feb. 2013. graf, tab
Article in English | LILACS | ID: lil-666169

ABSTRACT

The aim of this work was to study the effect of dynamic maceration factors upon the curcumin content of Curcuma longa L., Zingiberaceae, extracts and to determine the optimum set of parameters for the extraction of curcumin using a 2(5) full factorial design and the response surface methodology. Under the established conditions, the content of soluble solids and curcumin in the extracts ranged from 0.8 to 3.4%, and from 0.1 to 1.8%, respectively. The most influential variable observed for the extraction was the ethanolic strength of the solvent. The optimized condition involves an extraction time of 12 h, agitation speed of 30 rpm, drug to solvent ratio of 1/6, extraction temperature of 80 ºC and the solvent with ethanolic strength of 70%. The data reported herein are useful for further developments of curcuma phytopharmaceutical intermediate products with optimized characteristics.

3.
Rev. bras. farmacogn ; 23(1): 115-123, Jan.-Feb. 2013. ilus, tab
Article in English | LILACS | ID: lil-666185

ABSTRACT

A 2³ full factorial design was used to assess the impact of spraying air flow rate (30-50 L/min), drying air inlet temperature (90-150 ºC) and extract feed rate (4-6 g/min) on the quality of Eugenia dysenterica DC., Myrtaceae, spray-dried extracts. Response surface methodology (RSM) was applied to analyze the significance of the effects of process factors on product quality and to obtain fitted equations to predict dry powder properties. Powder yields were satisfactory, ranging from 34.64 to 63.92%. The dried products showed moisture contents and water activities below 5% and 0.5, respectively. The recuperation ratios of total polyphenols, tannins and flavonoids ranged from 88.66 to 99.07%, 70.38 to 81.87% and 74.51 to 98.68%, respectively. Additionally, in some conditions the parameters related to dry product’s flowability and compressibility varied over a range acceptable for pharmaceutical purposes. RSM proved that studied factors significantly affected most of the quality indicators at different levels. The spray drying technology is an attractive and promising alternative for the development of intermediate phytopharmaceutical products of E. dysenterica.

SELECTION OF CITATIONS
SEARCH DETAIL