Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 89-96, 2022.
Article in Chinese | WPRIM | ID: wpr-904798

ABSTRACT

Objective @#To investigate the effect of silencing histone deacetylase 9 (HDAC9) expression on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs).@*Methods@# PDLSCs were isolated, cultured and identified in vitro. An siRNA construct specific for HDAC9 was transfected into PDLSCs (siHDAC9 group), and a nontargeting siRNA was used as a control (siNC group). The interference effect was determined by qRT-PCR. The cell cycle progression of PDLSCs was detected using flow cytometry. The proliferation activity of PDLSCs was detected via CCK-8 assay. Western blotting was used to detect the protein expression of proliferating cell nuclear antigen (PCNA). The mRNA expression of runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP) was investigated by qRT-PCR. The protein expression of RUNX2 was detected by western blotting. In addition, the formation of mineralized nodules was assessed by alizarin red staining. @*Results@#Compared with that in the siNC group, the mRNA expression of HDAC9 in the siHDAC9 group was lower (P < 0.01). Moreover, compared with those in the siNC group, the proliferation index (P<0.01), proliferation activity (P<0.05) and protein expression of PCNA (P<0.01) in the siHDAC9 group were all increased. Compared with the siNC group, the siHDAC9 group exhibited higher mRNA expression of RUNX2 and ALP (P < 0.05), and the protein expression of RUNX2 showed the same results (P < 0.01). The results of alizarin red staining showed that compared to the siNC group, the siHDAC9 group formed more mineralized nodules.@* Conclusion@#Silencing HDAC9 expression can promote the proliferation and osteogenic differentiation of PDLSCs.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 569-574, 2020.
Article in Chinese | WPRIM | ID: wpr-825025

ABSTRACT

Objective @# To explore the effect of miR-21 on human periodontal ligament stem cells (PDLSCs) proliferation and osteogenesis and to provide a theoretical basis for the stem cell treatment of periodontitis.@*Methods@#hPDLSCs were isolated and cultured with the enzymatic tissue block method, and surface molecules (CD34, CD45, CD90 and CD105) were detected by flow cytometry. An miR-21 mimics (pre-miR-21) and inhibitor (anti-miR-21) were transfected into hPDLSCs by Lipofectamine 2000. The experiment groups: mimics-NC group, mimics group, inhibitor group, and inhibitor-NC group. The transfection efficiency of miR-21 was determined by qRT-PCR. Proliferation was detected by CCK-8 and flow cytometry. The osteogenic differentiation ability of hPDLSCs was determined by alizarin red staining. Western blot was used to detect the protein expression of osteogenic related genes: Runx2.@*Results@#The mRNA expression of miR-21in the mimics group was significantly higher than that in the mimics-NC group; additionally, the expression in the inhibitor group was significantly weaker than that in the inhibitor-NC group (P < 0.05). hPDLSCs proliferation and the S phase cell ratio in the mimics group were stronger than those in the mimics-NC group(P < 0.05); those in the inhibitor group were weaker than those in the inhibitor-NC group (P < 0.05). After alizarin red staining, the mimics group was found to have more mineralized modules than mimics-NC group, and the inhibitor group had fewer than that in the inhibitor-NC group. Runx2 protein expression in the mimics group was higher than that in the mimics-NC group (P <0.05), and expression was lower in the inhibitor group than in the inhibitor-NC group (P < 0.05).@*Conclusion@#miR-21can promote the proliferation and osteogenesic differentiation of hPDLSCs.

SELECTION OF CITATIONS
SEARCH DETAIL