Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 44(7): 671-681, July 2011. ilus
Article in English | LILACS | ID: lil-595699

ABSTRACT

The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4 percent). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1 percent). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7 percent, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64 percent). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5 percent). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors.


Subject(s)
Animals , Female , Mice , Aging/metabolism , Arginase/biosynthesis , Cytokines/biosynthesis , Inflammation/immunology , Macrophages/immunology , Nitric Oxide Synthase Type II/biosynthesis , Disease Models, Animal , Lipopolysaccharides , Mice, Inbred BALB C , Macrophages/metabolism
2.
Braz. j. med. biol. res ; 43(1): 68-76, Jan. 2010. ilus
Article in English | LILACS | ID: lil-535644

ABSTRACT

Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20 percent, respectively) than DC from immunized mice (P < 0.05) in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-â levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05). DC from both immunized and tolerized old and very old (60 and 80 weeks old) mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05). A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50 percent, respectively). The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.


Subject(s)
Animals , Humans , Mice , Aging/immunology , Cytokines/biosynthesis , Dendritic Cells/physiology , Immune Tolerance/immunology , Immunity, Humoral/immunology , T-Lymphocytes/immunology , /immunology , /immunology , Cell Proliferation , Coculture Techniques , Cytokines/immunology , Dendritic Cells/immunology , Mice, Inbred BALB C , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL