Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 541-549, 2019.
Article in English | WPRIM | ID: wpr-847029

ABSTRACT

The ability to maintain metabolic homeostasis is a key capability critical for the survival and well-being of animals living in constantly changing environments. Metabolic homeostasis depends on neuromodulators, such as biogenic amines, neuropeptides, and hormones, to signal changes in animals’ internal metabolic status and to orchestrate their behaviors accordingly. An important example is the regulation of feeding behavior by conserved molecular and cellular mechanisms across the animal kingdom. Its relatively simple brain coupled with well-characterized genetics and behavioral paradigms makes the fruit fly Drosophila melanogaster an excellent model for investigating the neuromodulatory regulation of feeding behavior. In this review we discuss the neuromodulators and neural circuits that integrate the internal physiological status with external sensory cues and modulate feeding behavior in adult fruit flies. Studies show that various specific aspects of feeding behavior are subjected to unique neuromodulatory regulation, which permits fruit flies to maintain metabolic homeostasis effectively.

2.
Journal of Zhejiang University. Science. B ; (12): 541-549, 2019.
Article in English | WPRIM | ID: wpr-776709

ABSTRACT

The ability to maintain metabolic homeostasis is a key capability critical for the survival and well-being of animals living in constantly changing environments. Metabolic homeostasis depends on neuromodulators, such as biogenic amines, neuropeptides, and hormones, to signal changes in animals' internal metabolic status and to orchestrate their behaviors accordingly. An important example is the regulation of feeding behavior by conserved molecular and cellular mechanisms across the animal kingdom. Its relatively simple brain coupled with well-characterized genetics and behavioral paradigms makes the fruit fly Drosophila melanogaster an excellent model for investigating the neuromodulatory regulation of feeding behavior. In this review we discuss the neuromodulators and neural circuits that integrate the internal physiological status with external sensory cues and modulate feeding behavior in adult fruit flies. Studies show that various specific aspects of feeding behavior are subjected to unique neuromodulatory regulation, which permits fruit flies to maintain metabolic homeostasis effectively.

SELECTION OF CITATIONS
SEARCH DETAIL