Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Critical Care Medicine ; (12): 28-34, 2022.
Article in Chinese | WPRIM | ID: wpr-931819

ABSTRACT

Objective:To investigate the changes of intestinal microecology in the early stage of sepsis rat model by 16S rDNA sequencing.Methods:Sixty male Sprague-Dawley (SD) rats were randomly divided into cecal ligation and puncture (CLP) group and sham operation group (Sham group), with 30 rats in each group. In the CLP group, sepsis rat model was reproduced by CLP method; the rats in the Sham group only underwent laparotomy without CLP. At 24 hours after the operation, the intestinal feces and serum samples of 8 rats in each group were collected. The survival rate of the rest rats was observed until the 7th day. The level of serum tumor necrosis factor-α (TNF-α) was detected by enzyme-linked immunosorbent assay (ELISA). Intestinal feces were sequenced by 16S rDNA sequencing technology. The operational taxonomic unit (OTU) data obtained after sequence comparison and clustering was used for α diversity and β diversity analysis, principal coordinate analysis and linear discriminant analysis effect size analysis (LEfSe) to observe the changes of intestinal microecology in early sepsis rats and excavate the marker flora.Results:At 24 hours after the reproduction of the model, the rats in the CLP group showed shortness of breath, scattered hair and other manifestations, and the level of serum TNF-α increased significantly as compared with that in the Sham group (ng/L: 43.95±9.05 vs. 11.08±3.27, P < 0.01). On the 7th day after modeling, the cumulative survival rate of the Sham group was 100%, while that of the CLP group was 31.82%. Diversity analysis showed that there was no significant difference in α diversity parameter between the Sham group and the CLP group (number of species: 520.00±52.15 vs. 492.25±86.61, Chao1 richness estimator: 707.25±65.69 vs. 668.93±96.50, Shannon index: 5.74±0.42 vs. 5.79±0.91, Simpson index: 0.93±0.03 vs. 0.94±0.05, all P > 0.05). However, the β diversity analysis showed that the difference between groups was greater than that within groups whether weighted according to OTU or not (abundance weighted matrix: R = 0.23, P = 0.04; abundance unweighted matrix: R = 0.32, P = 0.01). At the phylum level, the abundance of Proteobacteria and Candidatus_sacchari in the CLP group increased significantly as compared with the Sham group [18.100% (15.271%, 26.665%) vs. 6.974% (2.854%, 9.764%), 0.125% (0.027%, 0.159%)% vs. 0.018% (0.008%, 0.021%), both P < 0.05]. At the genus level, the abundance of opportunistic pathogen including Helicobacter, Ruthenium, Streptococcus, Clostridium ⅩⅧ in the CLP group was significantly higher than that in the Sham group [5.090% (1.812%, 6.598%) vs. 0.083% (0.034%, 0.198%), 0.244% (0.116%, 0.330%) vs. 0.016% (0.008%, 0.029%), 0.006% (0.003%, 0.010%) vs. 0.001% (0%, 0.003%), 0.094% (0.035%, 0.430%) vs. 0.007% (0.003%, 0.030%), all P < 0.05], and the abundance of probiotics such as Alloprevotella and Romboustia was significantly lower than that in the Sham group [7.345% (3.662%, 11.546%) vs. 22.504% (14.403%, 26.928%), 0.113% (0.047%, 0.196%) vs. 1.229% (0.809%, 2.29%), both P < 0.01]. LEfSe analysis showed that the probiotics belonging to Firmicutes were significantly enriched in the Sham group, and Romboustia was the most significantly enriched species. Opportunistic pathogens such as Helicobacter, Streptococcus and Clostridium ⅩⅧ were significantly enriched in the CLP group, Helicobacter_NGSU_ 2015 was the most significantly enriched species. Conclusion:In the early stage of sepsis, the intestinal microbiota structure of rats is significantly changed, which mainly shows that the abundance of Alloprevotella and other probiotics is significantly reduced, while that of Helicobacter and other opportunistic pathogens is significantly increased.

2.
Chinese Journal of Emergency Medicine ; (12): 191-196, 2022.
Article in Chinese | WPRIM | ID: wpr-930218

ABSTRACT

Objectve:To study the effect of gabexate mesylate (GM) on acute lung injury (ALI) in septic rats based on metabonomics.Methods:Fifty-seven SD rats were randomly(random number) divided into three groups: sham operation group (SC group), cecal ligation puncture induced septic ALI group (CLP group), and intraperitoneal administration of GM at 1 h after CLP (CLP-GM group). Twenty-four h after the experiment, the survival of rats in the SC, CLP and CLP-GM groups was observed, the lung tissue was collected for HE staining to observe the pathological changes, and the plasma was collected for metabonomics detection to analyze the characteristics of metabolites.Results:Compared with the SC group, the infiltration of inflammatory cells in the lung tissue of rats in the CLP groupincreased significantly, and the metabolic profile of plasma changed significantly. However, the pathological and metabonomic characteristics of the CLP-GM group showed that the above changes were reversed after the application of GM. Twelve major differential metabolites were found in plasma. The metabolic pathways involved in the disorder included biosynthesis of phenylalanine, tyrosine and tryptophan, phenylalanine metabolism and sphingolipid metabolism.Conclusions:GM may improve septic ALI by regulating amino acid metabolism, sphingolipid metabolism and other metabolic pathways.

SELECTION OF CITATIONS
SEARCH DETAIL