Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 38(1): 5-10, Jan. 2005. tab, graf
Article in English | LILACS | ID: lil-405548

ABSTRACT

An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs) of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER) and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ß-ATP, and ADP failed to do so in a 1- to 200-æm con- centration. The EC50 obtained for the compounds tested was 41.77 æM for UTP, 48.11 æM for GTP, 53.11 æM for UDP, and 30.78 æM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.


Subject(s)
Animals , Calcium/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Erythrocytes/cytology , Lizards/blood , /physiology , /agonists , Spectrometry, Fluorescence
2.
Braz. j. med. biol. res ; 36(11): 1465-1469, Nov. 2003. graf
Article in English | LILACS | ID: lil-348285

ABSTRACT

Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 æM - 75 percent), staurosporine (1 æM - 58 percent), R03 (1 æM - 75 percent), and tyrphostins B44 (100 æM - 66 percent) and B46 (100 æM - 68 percent). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.


Subject(s)
Animals , Female , Mice , Enzyme Inhibitors , Erythrocytes , Plasmodium chabaudi , Protein-Tyrosine Kinases , Cell Cycle , Life Cycle Stages , Malaria , Mice, Inbred BALB C , Plasmodium chabaudi
3.
Braz. j. med. biol. res ; 36(11): 1583-1587, Nov. 2003. ilus
Article in English | LILACS | ID: lil-348288

ABSTRACT

The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 æM melatonin and 0.1 æM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.


Subject(s)
Animals , Mice , Acetylserotonin O-Methyltransferase , Calcium , Erythrocyte Membrane , Melatonin , Plasmodium chabaudi , Calcium Signaling , Cell Membrane Permeability , Host-Parasite Interactions , Mice, Inbred BALB C , Microscopy, Confocal
4.
Braz. j. med. biol. res ; 33(1): 11-7, Jan. 2000. graf
Article in English | LILACS | ID: lil-252251

ABSTRACT

We have studied the effect of peroxynitrite (ONOO-) on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO-) disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2 percent) at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50 percent at 250 µM ONOO-). However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM) also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Trolox® (1 mM), but not mannitol (100 mM), were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM) was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90 percent) at 500 µM melatonin). Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes


Subject(s)
Animals , Mice , Antioxidants/pharmacology , Cytoskeletal Proteins/drug effects , Erythrocytes/drug effects , Free Radical Scavengers/pharmacology , Melatonin/pharmacology , Membrane Proteins/drug effects , Nitrates/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Electrophoresis, Polyacrylamide Gel , Spectrin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL