Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Indian J Med Microbiol ; 2014 Jan- Mar ; 32 (1): 31-35
Article in English | IMSEAR | ID: sea-156844

ABSTRACT

Background: Fluoroquinolones are the drugs extensively employed for the treatment of Salmonella infections. Over the couple of decades that have elapsed since the introduction of fl uoroquinolones, resistance to these agents by Enterobacteriaceae family members has become common and widespread. Although fl uoroquinolone resistance is mediated by genomic DNA (deoxyribonucleic acid) as well as plasmid DNA, the plasmid-mediated quinolone resistance (PMQR) facilitates higher level resistance by interacting with genomic mechanism and is capable of horizontal spread. Materials and Methods: During a period of 1-year, 63 typhoidal Salmonellae were isolated from 14,050 blood cultures and one parietal wall abscess. 36 (56.25%) were Salmonella Typhi and 27 (42%) were Salmonella Paratyphi A. They were all screened for resistance by the disc diffusion method and their minimum inhibitory concentrations were determined using agar dilution, broth dilution and E-strip method. Ciprofl oxacin resistant isolates were screened for PMQR determinants by polymerase chain reaction assay. Results: All the 63 isolates were resistant to nalidixic acid. Among the 36 S. Typhi isolates 20 were resistant to ciprofl oxacin, of which 14 carried the plasmid gene qnrB and one carried the aac(6’)-Ib-cr gene. qnrA and qnrS genes were not detected. Ciprofl oxacin resistance was not seen in any of the S. Paratyphi A isolates. Conclusion: The antibiotic sensitivity pattern of typhoidal Salmonellae shows an increasing trend of PMQR. The allele B of qnr gene was found to be the predominant cause of PMQR in this study.

SELECTION OF CITATIONS
SEARCH DETAIL