Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Year range
1.
Article | IMSEAR | ID: sea-214889

ABSTRACT

Heat polymerized denture base resins are a popular choice in prosthodontics for fabrication of partial or complete dentures, cranioplasts, hybrid implant prosthesis, and maxillofacial prosthetics. The wide utility of these materials can be attributed to their favourable mechanical properties. Despite the popularity gained by them, clinicians often encounter suboptimal flexural strength resulting in frequent fracture of the fabricated prosthesis. The purpose of this study was to compare the flexural strength (FS) of Polymethylmethacrylate (PMMA) modified using micro-additions of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) as fillers respectively with PMMA having no micro-additions.METHODSThis is an in-vitro comparative study. Sixty samples of PMMA were divided in three groups of 20 each containing: Group 1: no micro additions (control group), Group 2: 0.5 wt% MWCNT in monomer of PMMA resin, Group 3: 0.5 wt% GO in monomer of PMMA resin. MWCNT and Graphene oxide were dispersed in Methylmethacrylate (monomer) respectively by ultrasonic agitation. Monomer and polymer were mixed in the ratio of 1:3. The samples were heat polymerised. Finished samples were subjected to 3-point bending test for checking their flexural strength. The results were statistically compared using one-way ANOVA followed by post hoc Bonferroni corrected paired T test for inter-group comparisons.RESULTSThe highest mean Flexural Strength of 36.5 MPa was recorded in Group 2 (MWCNT) followed by 31.55 MPa in Group 1 (control) and the least 29.72 MPa in Group 3 (Graphene Oxide) respectively. Intergroup comparisons revealed significant difference between Group 1 (control) & Group 2 (MWCNT) with “p=0.011” and between Group 2 (MWCNT) & Group 3 (Graphene Oxide) with “p<0.001”. However, no significant difference was found between Group 1 (control) and Group 3 (Graphene Oxide) with “p= 0.803”.CONCLUSIONSThe addition of 0.5 wt% MWCNT to PMMA is an easy, effective and economical step towards increasing the flexural strength and thus, decreasing the incidence of prosthesis fracture, when compared to 0.5 wt% graphene oxide or no micro additions.

SELECTION OF CITATIONS
SEARCH DETAIL