Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Ciênc. rural ; 37(4): 1212-1220, jul.-ago. 2007. tab, ilus
Article in Portuguese | LILACS | ID: lil-455393

ABSTRACT

A suplementação de bovinos leiteiros com selênio é feita tanto em sua forma orgânica como inorgânica. Nas plantas, o Se é incorporado aleatoriamente na sua forma orgânica e encontra-se como análogo de aminoácidos sulfurados, ou seja, selenometionina e selenocisteína. As formas inorgânicas, por sua vez, correspondem aos sais selenato (SeO4-2) e selenito (SeO3-2). Contudo, enquanto a forma orgânica é metabolizada inicialmente como o aminoácido sulfurado análogo, as formas inorgânicas são metabolizadas diretamente via seleneto (HSe-) para serem incorporadas em selenoproteínas funcionais, como a glutationa peroxidase. Assim, a selenometionina é metabolizada como a metionina, sendo incorporada ao acaso em proteínas do organismo. Somente após o turnover protéico, a selenometionina é então liberada, podendo servir como fonte de Se. Além disso, em animais de alta produção, a incorporação de selenometionina a proteínas do leite pode torná-la indisponível às selenoproteínas funcionais. Em função disso, análises da concentração de Se no solo, nos alimentos dos animais e no leite, são somente complementares à análise da atividade da glutationa peroxidase, pois não indicam o grau com que o Se vai ser metabolizado pelo animal. O Se no leite, por sua vez, reflete a concentração de fontes orgânicas de Se no sangue. Em torno de 70 por cento do Se no leite está incorporado à caseína. A suplementação de Se para bovinos leiteiros é necessária em qualquer fase de crescimento ou estado fisiológico dos animais, mas o metabolismo das diferentes fontes de Se precisa ser considerado. Enquanto que, em deficiências agudas, fontes inorgânicas parecem ser mais apropriadas, as fontes orgânicas podem ser eficientes em casos de deficiência crônica ou em períodos de suplementação ineficiente de Se.


Selenium is supplemented for dairy cattle using organic or inorganic selenium sources. In plants, Se is randomly incorporated also in proteins and its organic form is found as an analogue of sulphur amino acids, i.e. selenomethionine (SeMet) or selenocystein (SeCis). Inorganic forms are mostly found as selenite (SeO3-2) or selenate (SeO4-2). However, it is important to distinguish between the metabolism of the different Se sources. Whereas the organic form (SeMet and SeCis) can be metabolized as amino acid, the inorganic forms are readily incorporated through selenide (HSe-) into functional selenoproteins, like glutathione peroxidase. Thus, selenoamino acids are incorporated randomly to any body protein and are available as potential Se sources only after protein turnover. In addition, there is a risk for high yielding dairy cows to loose Se for functional selenoproteins when selenoamino acids, especially SeMet, are incorporated into milk proteins, considering that about 70 percent of Se in milk is incorporated to casein. Measurements of Se content in soil and feed samples have therefore only a complementary value, because the metabolism in dairy cows is difficult to be foreseen with only the Se content in soil and feeds. Se supplementation is important for all animals, but metabolism of the different Se sources needs to be taken into consideration. Whereas acute deficiencies are corrected with inorganic Se sources, organic sources seem to be more efficient to overcome temporarily deficiencies.

2.
Arch. latinoam. nutr ; 43(4): 294-298, Dec. 1993.
Article in English | LILACS | ID: lil-318956

ABSTRACT

Several studies have demonstrated that rabbits can be maintained on diets containing high levels of Crude Fiber (CF) when compared to other monogastric animals. In the present study, we examined the effects of rice hulls and of bermuda grass (cv. Coast cross) on the growing performance of 30 day-old weaned rabbits. Rabbits were fed one of 5 diets containing rice hulls and/or bermuda grass as fiber source at the following proportions (BG/RH) 0/17.5, 15/11, 0/29, 14.7/19.1 and 48.5/0 for diets A, B, C, D and E, respectively. Body weight gain and voluntary feed intake were measured at 30, 44, 58 and 72 days. The time necessary to attain 2 kg of live body weight was not affected by the diets. However, daily weight gain differed significantly during the first two weeks after weaning among dietary groups. Diets C and D caused a lower body weight gain, probably because of the high level of Acid Detergent Fiber (ADF) in the diet (24 and 23). Voluntary feed intake increased with age in all treatments, but food intake was lower in treatments C and D when compared to animals receiving treatments B and E. The present results demonstrate that when rice hulls are used as fiber source, fiber must be given as ADF and not as CF because the difference between ADF and CF is enormous. Rice hull-containing diets balanced with CF give an inappropriate amount of components that seem to affect the growth performance of young animals.


Subject(s)
Animals , Male , Female , Magnoliopsida , Oryza , Rabbits , Analysis of Variance , Body Weight , Diet , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL