Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Type of study
Language
Year range
1.
Braz. j. med. biol. res ; 42(10): 935-941, Oct. 2009. ilus, tab
Article in English | LILACS | ID: lil-526197

ABSTRACT

A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17 percent protein (normal-protein diet; NP) or 6 percent protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65 percent) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30 percent reduction in insulin receptor substrate-1 and a 70 percent increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43 percent in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71 percent in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.


Subject(s)
Animals , Male , Rats , Forkhead Transcription Factors/metabolism , Insulin-Secreting Cells/pathology , /metabolism , Nerve Tissue Proteins/metabolism , Protein-Energy Malnutrition , Diet, Protein-Restricted , Phosphorylation , Protein-Energy Malnutrition/metabolism , Protein-Energy Malnutrition/pathology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL