Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 53(4): e00084, 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-889437

ABSTRACT

ABSTRACT The receptor protein PfATP6 has been identified as the common target of artemisinin and curcumin. The work was initiated to assess the antimalarial activity of six curcumin derivatives based on their binding affinities and correlating the in silico docking outcome with in vitro antimalarial screening results. A ligand library of thirty two Knoevenagel condensates of curcumin were designed and docked against PfATP6 protein and six compounds with the best binding scores were synthesized and screened for their antimalarial activity against the sensitive 3D7 strain of Plasmodium falciparum. ADME/Tox, pharmacokinetic and pharmacodynamic profiles of the designed compounds were analyzed and reported. 4-FB was found to have similar binding energy to the standard artemisinin (-6.75 and -6.73 respectively) while 4-MB, 3-HB, 2-HB, B, 4-NB displayed better binding energy than curcumin (-5.95, -5.89, -5.68, -5.35, -5.29 and -5.25 respectively). At a dose of 50 µg/mL all the six compounds showed 100% schizont inhibition while at 5µg/ml, five showed more than 75% inhibition and better results than curcumin. 4-FB showed the best activity with 97.8% schizonticidal activity. The in vitro results superimpose the results obtained from the in silico study thereby encouraging development of promising curcumin leads in the battle against malaria.


Subject(s)
Curcumin/analysis , Malaria/prevention & control , Antimalarials/analysis , Computer Simulation/statistics & numerical data
2.
Indian J Exp Biol ; 2015 Jan; 53(1): 56-60
Article in English | IMSEAR | ID: sea-158317

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) are beneficial rhizobacteria which enhance plant growth as well as the productivity by a variety of mechanisms. PGPR were isolated from the rhizosphere region of som plants (Machilus bombycina King) maintained at the Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat. A bacterial based bioformulation was prepared and sprayed over the experimental crops including tomato (Solanum lycopersicum), cauliflower (Brassica oleracea var botrytis), chili (Capsicum annuum) and brinjal (Solanum melongena). Biochemical analysis was done on these PGPR treated crops as well as the untreated crops. The bioformulations prepared from Bacillus cereus (MTCC 8297), Pseudomonas rhodesiae (MTCC 8299) and Pseudomonas rhodesiae (MTCC 8300) was found to be the most effective in increasing the shoot height, number of leaves, early fruiting and total biomass content of the plants after treatment.


Subject(s)
Crops, Agricultural , Rhizobium/classification , Rhizobium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL