Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Experimental Hematology ; (6): 358-362, 2009.
Article in Chinese | WPRIM | ID: wpr-302133

ABSTRACT

This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.


Subject(s)
Humans , Apoptosis , Cell Cycle , Cell Division , Flow Cytometry , Tumor Cells, Cultured , Vinblastine , Pharmacology
2.
Journal of Experimental Hematology ; (6): 965-968, 2009.
Article in Chinese | WPRIM | ID: wpr-343370

ABSTRACT

This study was purposed to evaluate a method to discriminate the action loci of anticancer agents in G(2) and M phases of cell cycle. The meta-amsacrine (m-AMSA) and vinblastine (VBL), already known as G(2) and M phase arrest agent respectively, were used to induce the arrest of MOLT-4 cells at G(2) and M phases, the change of DNA content was detected by flow cytometry, the morphology of arrested cells was observed by confocal microscopy so as to find the arrest efficacy difference of 2 anticancer agents. As a result, the flow cytometric detection showed that the arrested MOLT-4 cells displayed the raise of peaks in G(2) and M phases, but flow cytometric detection alone can not discriminate the difference between them. The observation with confocal microscopy showed that the MOLT-4 cells arrested by m-AMSA displayed the morphologic features in G(2) phase, while the MOLT-4 cells arrested by VBL displayed the morphologic features in M phase. This observation with confocal microscopy is helpful to discriminate the difference between them. In conclusion, the combination of flow cytometry with confocal microscopy is one of the effective methods to discriminate the kind of G(2) or M phase arresting agent of anticancer drugs.


Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Cell Cycle , Cell Division , Flow Cytometry , G2 Phase , Microscopy, Confocal , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL