Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 26(1): 34-43, Jan.-Feb. 2016. graf
Article in English | LILACS | ID: lil-772632

ABSTRACT

Abstract This study investigated the effects of the flavonoids 5-hydroxy-7,4′-dimethoxyflavone, casticin, and penduletin, isolated from Croton betulaster Müll Arg., Euphorbiaceae, a plant utilized in popular medicine in Brazil, on the growth and viability of the human glioblastoma cell line GL-15. We observed that 5-hydroxy-7,4′-dimethoxyflavone and casticin were not toxic to GL-15 cells after 24 h of exposure. However, casticin and penduletin inhibited the metabolic activity of glioblastoma cells significantly at a concentration of 10 µM (p ≤ 0.05). Flavonoids casticin and penduletin also induced a significant and dose-dependent growth inhibition beginning at 24 h of exposure, and the most potent flavonoid was penduletin. It was also observed that penduletin and casticin induced an enlargement of the cell body and a reduction of cellular processes, accompanied by changes in the pattern of expression of the cytoskeletal protein vimentin. Signs of apoptosis, such as the externalization of membrane phosphatidyl serine residues, nuclear condensation, and fragmentation, were also detected in cells treated with 50–100 µM flavonoids. Our results indicate that flavonoids extracted from C. betulaster present antitumoral activity to glioblastoma cells, with penduletin proving to be the most potent of the tested flavonoids. Our results also suggest that these molecules may be promising supplementary drugs for glioblastoma treatment.

2.
J. bras. patol. med. lab ; 40(4): 280-285, jul.-ago. 2004. graf
Article in English | LILACS | ID: lil-364499

ABSTRACT

It is known that the exposure to benzene in the petroleum industry causes lympho-haematopoietic cancer among workers. However, there is little data concerning the toxicity of benzene to the central nervous system. Benzene easily penetrates the brain where it is metabolized to catechol. Since catechol autoxidizes in physiological phosphate buffer, we hypothesized that it could be toxic towards glial cells due to the generation of reactive oxygen species and quinones. In this work we studied the cytotoxic properties of catechol towards human glioblastoma cells. We found that catechol was toxic towards these cells after 72 hours and this toxicity was related to the formation of quinones. Catechol at 230µM killed 50% of cells. The catechol-induced cytotoxicity was prevented by the addition of 100U superoxide dismutase, which also inhibited the formation of quinones. These data suggest that catechol induces cytotoxicity via the extracellular generation of superoxide and quinones.


Sabe-se que a exposição de trabalhadores ao benzeno na indústria petrolífera é uma causa de câncer do sistema linfo-hematopoiético. Pouco se sabe, contudo, a respeito da toxicidade do benzeno no sistema nervoso central. O benzeno penetra facilmente no cérebro, onde é metabolizado a catecol. Como o catecol se auto-oxida em tampão fosfato no pH fisiológico, supôs-se que esse composto poderia ser tóxico para células gliais por gerar espécies reativas do oxigênio e quinonas. Nesse trabalho estudou-se a citotoxicidade do catecol para células de glioblastoma humano. O catecol foi tóxico após 72 horas e essa toxicidade relacionou-se com a formação de quinonas. O catecol a 230mM matou metade das células em cultura. A toxicidade do catecol e a produção de quinonas foram inibidas por 100U de superóxido dismutase. Esses dados sugerem que a toxicidade induzida pelo catecol deve-se à produção extracelular de superóxido e quinonas reativas.


Subject(s)
Humans , Benzene/toxicity , Central Nervous System , Catechols/toxicity , Glioblastoma/metabolism , Occupational Exposure , Petroleum , Quinones/analysis , Superoxide Dismutase/pharmacology , Superoxide Dismutase/metabolism , Superoxides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL