Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biocell ; 35(1): 19-28, Apr. 2011. ilus, tab
Article in English | LILACS | ID: lil-595006

ABSTRACT

Bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and cycling-primed in situ labeling (C-PRINS) techniques were evaluated for integration of physical and genetic maps of sunflower (Helianthus annuus L.). Single-site SSR markers were selected from three linkage groups of a high-density sunflower genetic map. This selection was based on previously identified QTL associated to S. sclerotiorum. These markers were used to select BACs contaning single copy sequences for BAC-FISH aplication. Blocking of highly dispersed repetitive sunflower sequences reduced unspecific hybridization, and allowed the detection of specific signals for BACs containing SSR markers HA4222 and HA2600, anchored to LG 16 and LG 10, respectively. Single-site FISH signal detection was optimized by adjusting the relative quantity and quality of unlabelled repetitive sequences present in the blocking DNA. The SSR marker ORS1247 anchored to the LG 17 was detected by C-PRINS, which yielded fluorescence signals that were specific and intense. This progress in localizing single-copy sequences using BAC-FISH and indirect C-PRINS strategies in sunflower will facilitate the integration of genetic and physical maps, allowing the identification of chromosomes containing key genes and/or QTL associated to agronomic important traits in sunflower.


Subject(s)
Sequence Analysis, DNA/methods , Chromosomes, Plant , Chromosomes, Artificial, Bacterial/genetics , Helianthus/genetics , In Situ Hybridization, Fluorescence/methods , Base Sequence , Genetic Markers , Quantitative Trait Loci
2.
Genet. mol. biol ; 32(4): 797-801, 2009. ilus
Article in English | LILACS | ID: lil-531796

ABSTRACT

We studied three different tricepiros: (Don Santiago x Don Noé), (Cumé x Horovitz) and (Cumé x Don Noé). The tricepiro (Don Santiago x Don Noé) was obtained by crossing the triticale Don Santiago INTA (AABBRR, 2n = 6x = 42) with the trigopiro Don Noé INTA (AABBDDJJ, 2n = 8x = 56). The number of chromosomes for the F1 was 2n = 49, the most frequent meiotic configuration being 14 bivalents and 21 univalents. The univalents were situated in the periphery of the equatorial plane, whereas the bivalents were located in the central zone. The chromatids in some of the univalents split when bivalents underwent reductional division in anaphase I. There were few laggard chromosomes or chromatids at this phase. The number of chromosomes (2n = 48-58) was high and variable, and the number of bivalents per cell (18-23) also high in F3 individuals. In all F8 tricepiros (Don Santiago x Don Noé), F12 tricepiros (Cumé x Horovitz) and F12 tricepiros (Cumé x Don Noé), the number of chromosomes (2n = 42) was the same, these retaining the rye genome, as demonstrated by GISH and FISH. These new synthesized allopolyploids constitute interesting models for investigating the evolutionary changes responsible for diploidization, and the chromosomal and genomic re-ordering that cannot be revealed in natural allopolyploids.

SELECTION OF CITATIONS
SEARCH DETAIL