Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Medical Genetics ; (6): 456-461, 2019.
Article in Chinese | WPRIM | ID: wpr-771991

ABSTRACT

OBJECTIVE@#To report on the clinical pictures of 7 patients from a pedigree affected with X-linked adrenal hypoplasia congenita (XL-AHC) and hypogonadotropic hypogonadism (HH) and the underlying mutations.@*METHODS@#Seven patients were identified from a four-generation pedigree affected with XL-AHC and HH. Their clinical features, endocrinological changes, treatment and drug response were recorded. The patients were subjected to next-generation sequencing, and the result was verified by Sanger sequencing. PolyPhen-2 was used for predicting the influence of the mutation on protein production.@*RESULTS@#Three deceased patients had manifested adrenal insufficiency (AI) within one year after birth. Two died at 6 and one died at 12. The four survivors presented with salient clinical and endocrinological features of AHC and HH, adrenal and testicular atrophy, and renin-angiotensin compensation. Two adult patients had testicular micro-stone detected by ultrasound.One of them also had remarkable seminiferous tubule degeneration by biopsy. The patients were followed up for 0.5 to 10 years. All required hyper-physiological dose of hydrocortisone to stabilize their clinical condition. In three patients, gonadotropic or androgen replacement induced cardinal masculine development but with unsatisfactory testis growth and sperm production.Genetic analysis revealed a novel missense c.827A>C (p.Q276P) mutation in a hotspot region within a highly conserved domain. PolyPhen-2 predicted the mutation to be highly hazardous.@*CONCLUSION@#The novel p.Q276P mutation of the DAX1 gene probably underlies the XL-AHC and HH in this pedigree with variable clinical presentations in the patients.


Subject(s)
Humans , Male , Adrenal Insufficiency , DAX-1 Orphan Nuclear Receptor , Genetics , Hypoadrenocorticism, Familial , Genetics , Mutation , Mutation, Missense , Pedigree , Repressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL