Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
The Korean Journal of Parasitology ; : 77-79, 2017.
Article in English | WPRIM | ID: wpr-168701

ABSTRACT

The infection by Limnodrilus hoffmeisteri Claparède, 1862 (Oligochaeta: Tubificinae) in humans is relatively uncommon. The present report is to describe an incidental human infection with oligochaetes in the nasal cavity of a Chinese man, a 25-year-old man residing in Zhangjiakou city, Hebei province, China presenting with nose bleed, severe itching, continuous sneezing, and rhinorrhea. A lot of oligochaete worms were found in the nasal discharge of the patient. The detected worms were identified as Limnodrilus hoffmeisteri (Annelida: Oligochaeta) based on morphological and molecular characteristics. This incidental L. hoffmeisteri nasal infection is the first case in China and indicates that oligochaete worms can be encountered in humans.


Subject(s)
Adult , Humans , Asian People , China , Epistaxis , Nasal Cavity , Pruritus , Sneezing
2.
Chinese Journal of Tissue Engineering Research ; (53): 628-634, 2016.
Article in Chinese | WPRIM | ID: wpr-485806

ABSTRACT

BACKGROUND:We built Sprague-Dawley rat models with mild, moderate, and severe spinal cord injuries to accord with the spinal cord injury types for basic empirical study, and consequently to further understand the microenvironmental change in Sprague-Dawley rats with spinal cord injury, and to provide help for clinical treatment. OBJECTIVE:To observe the changes in nerve function, pathological manifestation and motor sensory evoked potential in Alen’s models and Sprague-Dawley rats with complete spinal cord transection at different time points after spinal cord injury by simulating the microenviroment in Sprague-Dawley rats. METHODS: A total of 125 healthy adult female Sprague-Dawley rats were selected and randomly divided into group sham operation group, 100 gcf hit potential group (20 g×5 cm), 200 gcf hit potential (20 g×10 cm), 300 gcf hit potential group (20 g×15 cm), and spinal cord complete transection group with 25 rats in each group. At 1, 5, 7, 14 and 28 days after model establishment, the degree of spinal cord injury was identified by the BBB scores of motion function, motor evoked potential, and pathological section. RESULTS AND CONCLUSION:(1) Totaly 24 Sprague-Dawley rats died in the experiment. The death rate and the rate of complications were highest in the spinal cord complete transection group. The BBB score of each group was decreased. The BBB scores in every group increased as time went on. There were significant differences between each surgery group and the sham operation group at corresponding time points (P 0.05). (2) In each surgery group, the infiltration of inflammatory cels and obvious sweling of neurons were visible at 1 day after injury. Neural cels reduced with time prolonged. At 28 days after injury, a large number of astrocytes proliferated, scar and spinal cord cavity formed. Above symptoms were worse in the 300 gcf hit potential group and spinal cord complete transection group than in the 100 gcf and 200 gcf hit potential groups. (3) Significant differences in amplitude and latency were detectable between each surgery group and the sham operation group (P 0.05). Results confirmed that hit potential of 20 g×5 cm, 20 g×10 cm and 20 g×15 cm can simulate the microenvironment of Sprague-Dawley rats with mild, moderate and severe spinal cord injury. The rate of complication was lower in modified Alen’s model of different hit potentials than in models of spinal cord complete transection, and was more accorded with basic research.

SELECTION OF CITATIONS
SEARCH DETAIL