Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Asian Journal of Andrology ; (6): 88-93, 2020.
Article in English | WPRIM | ID: wpr-1009722

ABSTRACT

Testicular cancer seminoma is one of the most common types of cancer among men of reproductive age. Patients with this condition usually present reduced semen quality, even before initiating cancer therapy. However, the underlying mechanisms by which testicular cancer seminoma affects male fertility are largely unknown. The aim of this study was to investigate alterations in the sperm proteome of men with seminoma undergoing sperm banking before starting cancer therapy, in comparison to healthy proven fertile men (control group). A routine semen analysis was conducted before cryopreservation of the samples (n = 15 per group). Men with seminoma showed a decrease in sperm motility (P = 0.019), total motile count (P = 0.001), concentration (P = 0.003), and total sperm count (P = 0.001). Quantitative proteomic analysis identified 393 differentially expressed proteins between the study groups. Ten proteins involved in spermatogenesis, sperm function, binding of sperm to the oocyte, and fertilization were selected for validation by western blot. We confirmed the underexpression of heat shock-related 70 kDa protein 2 (P = 0.041), ubiquinol-cytochrome C reductase core protein 2 (P = 0.026), and testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (P = 0.016), as well as the overexpression of angiotensin I converting enzyme (P = 0.005) in the seminoma group. The altered expression levels of these proteins are associated with spermatogenesis dysfunction, reduced sperm kinematics and motility, failure in capacitation and fertilization. The findings of this study may explain the decrease in the fertilizing ability of men with seminoma before starting cancer therapy.


Subject(s)
Adult , Humans , Male , Acrosin/metabolism , Case-Control Studies , Chaperonin Containing TCP-1/metabolism , Electron Transport Complex III/metabolism , HSP70 Heat-Shock Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteomics , Semen Analysis , Seminoma/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sperm Count , Sperm Motility , Spermatozoa/metabolism , Testicular Neoplasms/metabolism
2.
The World Journal of Men's Health ; : 198-207, 2020.
Article in English | WPRIM | ID: wpr-811459

ABSTRACT

PURPOSE: Patients with non-seminoma testicular cancer (NSTC) cancer can be subfertile or infertile, and present reduced sperm quality, but the underlying mechanisms are unknown. The aim of this study was to compare the sperm proteome of patients with NSTC, who cryopreserved their sperm before starting cancer treatment, with that from healthy fertile men.MATERIALS AND METHODS: Semen volume, sperm motility and sperm concentration were evaluated before the cryopreservation of samples from patients with NSTC (n=15) and the control group (n=15). Sperm proteomic analysis was performed by liquid chromatography-tandem mass spectrometry and the differentially expressed proteins (DEPs) between the two groups were identified using bioinformatic tools.RESULTS: A total of 189 DEPs was identified in the dataset, from which five DEPs related to sperm function and fertilization were selected for validation by Western blot. We were able to validate the underexpression of the mitochondrial complex subunits NADH:Ubiquinone Oxidoreductase Core Subunit S1 (NDUFS1) and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2), as well as the underexpression of the testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (ATP1A4) in the NSTC group.CONCLUSIONS: Our results indicate that sperm mitochondrial dysfunction may explain the observed decrease in sperm concentration, total sperm count and total motile count in NSTC patients. The identified DEPs may serve as potential biomarkers for the pathophysiology of subfertility/infertility in patients with NSTC. Our study also associates the reduced fertilizing ability of NSTC patients with the dysregulation of important sperm molecular mechanisms.

3.
IJFS-International Journal of Fertility and Sterility. 2017; 11 (3): 156-165
in English | IMEMR | ID: emr-192312

ABSTRACT

Background: The quality of semen depends upon several factors such as environment, life style, physical activity, age, and occupation. The aim of this study was to analyze and compare the conventional and functional semen parameters in men practicing vigorous physical activity to those of sedentary men


Materials and Methods: In this descriptive cross-sectional study, semen samples of 17 physically active men and 15 sedentary men were collected for analysis. Semen analysis was performed according to the World Health Organization [WHO] guidelines, while functional parameters were evaluated by flow cytometry


Results: Results showed that several semen parameters [semen volume, viability, progressive motility, total motility, normal morphology, and moribund cells] were superior in the physically active group in comparison with the sedentary group. Semen parameters such as viability, progressive motility and total motility, as well as the percentage of moribund spermatozoa were significantly different between both groups. However, sperm DNA damage, lipid peroxidation and mitochondrial potential were not significantly different among the groups


Conclusion: Nevertheless, the physical activity shows better semen parameters than sedentary group. Taken together, our results demonstrate that regular physical activity has beneficial impact in sperm fertility parameters and such a life style can enhance the fertility status of men

SELECTION OF CITATIONS
SEARCH DETAIL