Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 119-134, 2024.
Article in Chinese | WPRIM | ID: wpr-1005447

ABSTRACT

The purpose of this study was to explore the improving effect of Anshen Dingzhi Prescription (ADP) on Alzheimer's disease (AD)-like behavior in mice and its mechanisms. The main chemical components of ADP were identified by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The AD-like mouse model was induced by D-galactose (D-gal) combined with Aβ1-42 oligomer (AβO). The effect of ADP on AD-like behavior in mice was assessed using various behavioral experiments; pathomorphological changes in mouse hippocampal tissue were observed by Nissl staining and transmission electron microscopy; ELISA was used in the assessment of oxidative stress factors and inflammation-related factor levels; Western blot was performed to detect the expression of Aβ, Tau and glial fibrillary acidic protein (GFAP) proteins. The active components of ADP were screened according to TCMSP and HERB database, and the action targets of active components were predicted by Swiss Target Prediction platform. In addition, the targets of AD were predicted through DisGeNET database. Further, GO and KEGG enrichment analysis of common targets was carried out by Metascape database. Combined with the results of GO and KEGG analysis, in vivo experiments were carried out to explore the potential mechanism of ADP improving AD-like behavior in mice from the PI3K/Akt, calcium signal pathway and synaptic function. Finally, the core components of ADP were molecularly docked to the validated targets using Autodock Vina. Animal experiments were approved by the Animal Ethics Committee of Anhui University of Chinese Medicine (approval number: AHUCM-mouse-2021080). The results showed that the five chemical components, including ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B and α-asarone were found in the ADP. ADP significantly improved the anxiety-like behavior and memory impairment, protected hippocampal neurons, decreased the levels of oxidative stress and inflammation, and inhibited the expression of Aβ and p-Tau induced by D-galactose combined with AβO in mice. The results of network pharmacology suggested that PI3K/Akt, calcium signal pathway and cell components related to postsynaptic membrane might be the key factors for ADP to improve AD. Animal experiments revealed that ADP up-regulated N-methyl-D-aspartate receptor 2A (GluN2A), postsynaptic density protein 95 (PSD95), calpain-1, phosphorylated protein kinase B (p-Akt), phosphorylated cAMP response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF) expression and inhibited p-GluN2B and calpain-2 expression in the hippocampus of AD-like mice. The molecular docking results demonstrated that the core components of ADP, such as panaxacol, dehydroeburicoic acid, deoxyharringtonine, etc. had a high binding ability with the validated targets GRIN2A, GRIN2B, PSD95, etc. In summary, our results indicate ADP improves AD-like pathological and behavioral changes induced by D-galactose combined with AβO in mice, and the mechanism might be related to the NMDAR/calpain axis and Akt/CREB/BDNF pathway.

2.
Chinese Pharmacological Bulletin ; (12): 1661-1666, 2022.
Article in Chinese | WPRIM | ID: wpr-1013987

ABSTRACT

Aim To investigate the damage degree of doxorubicin hydrochloride( DOX )on cardiac function in rats, and to explore its possible mechanism. Methods Experiment 1: SD rats( n=48 )were randomly divided into control group( normal saline ), DOX 1 group( DOX cumulative dose 12 mg·kg-1 ;intraperitoneal injection ), DOX 2 group( 15 mg·kg-1 ;)and DOX 3 group( 18 mg·kg-1 ;). Cardiac structure and cardiac function were detected by echocardiography. B-type natriuretic peptide( BNP )was detected by ELISA. The morphological changes of myocardium were observed by Hematoxylin-eosin( HE )staining. The optimal dose group( DOX 2 group )was selected comprehensively. Experiment 2: SD rats( n=36 )were randomly divided into control group( normal saline ), DOX 2 group(15 mg·kg-1)and DOX 2+Mdivi-1 group( 15 mg·kg-1+daily abdominal injection of Mdivi-1(1 mg ·kg-1 ;)). Western blot was used to detect the protein expression of myocardial mitochondrial dynamics. Results Compared with the control group, hearts in DOX groups were enlarged and the heart function was reduced. Under the microscope, hypertrophy of cardiac cells and loose arrangement of cardiac fibers were observed in DOX group, and the higher the cumulative dose of DOX in rats, the more severe the degree of heart failure and the higher the mortality rate of rats. Compared with control group, the expression of mitochondrial dynamin-related protein 1( DRP1 )and related signaling pathway protein FUN14 domain containing 1( FUNDC1 )in DOX 2 group increased. The expression of optic atrophy 1( OPA1 )decreased, the expression of FUNDC1 and DRP1 protein decreased, and the expression of OPA1 protein was enhanced after the use of mitochondrial dynamics inhibitor(Mdivi-1). Conclusions DOX can cause chronic heart failure, and the mechanism may be related to DRP1/FUNDC1 mediated mitochondrial fission and fusion.

SELECTION OF CITATIONS
SEARCH DETAIL