Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Cancer Research and Treatment ; : 338-349, 2017.
Article in English | WPRIM | ID: wpr-101948

ABSTRACT

PURPOSE: Adipose stromal cells (ASCs) play an important regulatory role in cancer progression and metastasis by regulating systemic inflammation and tissue metabolism. This study examined whether visceral and subcutaneous ASCs (V- and S-ASCs) facilitate the growth and migration of ovarian cancer cells. MATERIALS AND METHODS: CD45– and CD31– double-negative ASCs were isolated from the subcutaneous and visceral fat using magnetic-activated cell sorting. Ovarian cancer cells were cultured in conditioned media (CM) obtained from ASCs to determine the cancer-promoting effects of ASCs. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, Boyden chamber assay, and western blotting were performed to determine the proliferative activity, migration ability, and activation of the JAK2/STAT3 pathway, respectively. RESULTS: CM from ASCs enhanced the migration of the ovarian cancer line, SKOV3, via activation of the JAK2/STAT3 signaling pathway. Interestingly, in response to ASC-CM, the ascites cells derived from an ovarian cancer patient showed an increase in growth and migration. The migration of ovarian cancer cells was suppressed by blocking the activation of JAK2 and STAT3 using a neutralizing antibody against interleukin 6, small molecular inhibitors (e.g., WP1066 and TG101348), and silencing of STAT3 using siRNA. Anatomical differences between S- and V-ASCs did not affect the growth and migration of the ovarian cancer cell line and ascites cells from the ovarian cancer patients. CONCLUSION: ASCs may regulate the progression of ovarian cancer, and possibly provide a potential target for anticancer therapy.


Subject(s)
Humans , Adipose Tissue , Antibodies, Neutralizing , Ascites , Blotting, Western , Cell Line , Cell Movement , Culture Media, Conditioned , Inflammation , Interleukin-6 , Intra-Abdominal Fat , Metabolism , Neoplasm Metastasis , Ovarian Neoplasms , RNA, Small Interfering , Stromal Cells , Subcutaneous Fat
2.
Journal of Cancer Prevention ; : 250-259, 2015.
Article in English | WPRIM | ID: wpr-58186

ABSTRACT

BACKGROUND: Glucocorticoids are effective anti-inflammatory drugs widely used in dermatology and for the treatment of blood cancer patients. Unfortunately, chronic treatment with glucocorticoids results in serious metabolic and atrophogenic adverse effects including skin atrophy. Glucocorticoids act via the glucocorticoid receptor (GR), a transcription factor that causes either gene transactivation (TA) or transrepression (TR). Compound A (CpdA), a novel non-steroidal GR ligand, does not promote GR dimerization and TA, retains anti-inflammatory potential but induces fewer metabolic side effects compared to classical glucocorticoids when used systemically. As topical effects of CpdA have not been well studied, this work goal was to compare the anti-inflammatory and side effects of topical CpdA and glucocorticoids and to assess their effect on GR TA and TR in keratinocytes. METHODS: We used murine immortalized keratinocytes and F1 C57BlxDBA mice. Effect of glucocorticoid fluocinolone acetonide (FA) and CpdA on gene expression in keratinocytes in vitro and in vivo was evaluated by reverse transcription-PCR. The anti-inflammatory effects were assessed in the model of tumor promoter 12-O-tertradecanoyl-acetate (TPA)-induced dermatitis and in croton oil-induced ear edema test. Skin atrophy was assessed by analysis of epidermal thickness, keratinocyte proliferation, subcutaneous adipose hypoplasia, and dermal changes after chronic treatment with FA and CpdA. RESULTS: In mouse keratinocytes in vitro and in vivo, CpdA did not activate GR-dependent genes but mimicked closely the inhibitory effect of glucocorticoid FA on the expression of inflammatory cytokines and matrix metalloproteinases. When applied topically, CpdA inhibited TPA-induced skin inflammation and hyperplasia. Unlike glucocorticoids, CpdA itself did not induce skin atrophy which correlated with lack of induction of atrophogene regulated in development and DNA damage response 1 (REDD1) causatively involved in skin and muscle steroid-induced atrophy. CONCLUSIONS: Overall, our results suggest that CpdA and its derivatives represent novel promising class of anti-inflammatory compounds with reduced topical side effects.


Subject(s)
Animals , Humans , Mice , Atrophy , Croton , Cytokines , Dermatitis , Dermatology , Dimerization , DNA Damage , Ear , Edema , Fluocinolone Acetonide , Gene Expression , Glucocorticoids , Hyperplasia , Inflammation , Keratinocytes , Matrix Metalloproteinases , Receptors, Glucocorticoid , Skin , Transcription Factors , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL