Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Experimental Neurobiology ; : 453-469, 2020.
Article in English | WPRIM | ID: wpr-898345

ABSTRACT

Major depressive disorder is a complex neuropsychiatric disorder with few treatment options. Non-targeted antidepressants have low efficacy and can induce series of side effects. While a neuropeptide, melanin-concentrating hormone (MCH), is known to exhibit regulator of affective state, no study to date has assessed the anti-depressive effects of MCH in a stress-induced depression model. This study aimed to evaluate the pharmacological effects of intranasal administration of MCH on depression-related behavior in stressed rats and mice. Using a number of behavioral tests, we found that MCH treatment significantly decreased anxiety- and depressive-like behaviors induced by stress. Notably, the effects of MCH were equivalent to those of fluoxetine. MCH treatment also restored the activity of the mammalian target of rapamycin (mTOR) signaling pathway and normalized the levels of synaptic proteins, including postsynaptic density 95, glutamate receptor 1, and synapsin 1, which were all downregulated by stress. Interestingly, the protective effects of MCH were blocked by the mTOR inhibitor, rapamycin. These results suggest that MCH exhibits antidepressant properties by modulating the mTOR pathway. Altogether, this study provides an insight into the molecular mechanisms involved in the antidepressant-like effects of MCH, thereby paving the way for the future clinical application of MCH.

2.
Experimental Neurobiology ; : 453-469, 2020.
Article in English | WPRIM | ID: wpr-890641

ABSTRACT

Major depressive disorder is a complex neuropsychiatric disorder with few treatment options. Non-targeted antidepressants have low efficacy and can induce series of side effects. While a neuropeptide, melanin-concentrating hormone (MCH), is known to exhibit regulator of affective state, no study to date has assessed the anti-depressive effects of MCH in a stress-induced depression model. This study aimed to evaluate the pharmacological effects of intranasal administration of MCH on depression-related behavior in stressed rats and mice. Using a number of behavioral tests, we found that MCH treatment significantly decreased anxiety- and depressive-like behaviors induced by stress. Notably, the effects of MCH were equivalent to those of fluoxetine. MCH treatment also restored the activity of the mammalian target of rapamycin (mTOR) signaling pathway and normalized the levels of synaptic proteins, including postsynaptic density 95, glutamate receptor 1, and synapsin 1, which were all downregulated by stress. Interestingly, the protective effects of MCH were blocked by the mTOR inhibitor, rapamycin. These results suggest that MCH exhibits antidepressant properties by modulating the mTOR pathway. Altogether, this study provides an insight into the molecular mechanisms involved in the antidepressant-like effects of MCH, thereby paving the way for the future clinical application of MCH.

3.
Journal of Korean Biological Nursing Science ; : 139-147, 2020.
Article | WPRIM | ID: wpr-835908

ABSTRACT

Purpose@#The purpose of this study was to determine the effects of different intensity of aerobic exercise for four weeks on cardiovascular risk factors, reactive oxygen, and antioxidant enzymes in old mice. @*Methods@#Eighteen male C57BL/6 mice age 18 months were randomly classified into the control group (n=6), the moderate intensity exercise group (n=6), and the low intensity exercise group (n=6). The training groups performed the aerobic exercise twice daily for 20 minutes, five days weekly for four weeks. Data were analyzed using descriptive statistics, analysis of variance (ANOVA), the Chi-square test, and the Tukey’s test with the SPSSWIN 21.0 program. @*Results@#In this study, among the risk factors of cardiovascular disease, blood sugar (BS) (p=.023) and total cholesterol (TC) (p=.001) were significantly different between the moderate intensity exercise group and the control group. Additionally, there were significant differences in the reactive oxygen malondialdehyde (MDA) (p=.001), the antioxidant enzymes superoxide dismutase (SOD) (p<.001) and glutathione reductase (GR) (p=.015) between the moderate intensity exercise group and the control group. @*Conclusion@#This finding suggests that moderate intensity aerobic exercise promotes the activity of antioxidant enzymes and lowers cardiovascular risk factors in older mice.

4.
Psychiatry Investigation ; : 558-564, 2019.
Article in English | WPRIM | ID: wpr-760953

ABSTRACT

OBJECTIVE: Synaptic vesicle mobilization and neurite outgrowth regulation molecules were examined in modulation of effects of methylphenidate (MPH) in Spontaneous Hypertensive Rats (SHRs), a model for attention-deficit hyperactivity disorder (ADHD). METHODS: We compared the changes in the protein expression level of Cyclin dependent kinase 5 (Cdk5) and molecular substrates of Cdk5; tropomyosin receptor kinase B (TrkB), syntaxin 1A (STX1A) and synaptosomal-associated protein 25 (SNAP25). Comparisons were made in prefrontal cortex of vehicle (distilled water i.p. for 7 days)-treated SHRs, vehicle-treated Wistar Kyoto Rats (WKYs) and MPH (2 mg/kg i.p. for 7 days) treated SHRs. RESULTS: The Cdk5 level of vehicle-treated SHRs was significantly decreased compared to the Cdk5 level of vehicle-treated WKY rats, but was restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. The ratio of p25/p35 was significantly decreased in MPH-treated SHR compared to vehicle-treated SHR. Moreover, TrkB, STX1A and SNAP25 of vehicle-treated SHRs were significantly decreased compared to vehicle-treated WKY rats, but were restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. CONCLUSION: The results show that Cdk5, TrkB, STX1A, and SNAP25 were involved in the modulation of MPH effects in prefrontal cortex of SHRs and play important role in treatment of ADHD.


Subject(s)
Animals , Rats , Cyclin-Dependent Kinase 5 , Methylphenidate , Neurites , Phosphotransferases , Prefrontal Cortex , Rats, Inbred WKY , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins , Synaptic Vesicles , Synaptosomal-Associated Protein 25 , Syntaxin 1 , Tropomyosin , Water
5.
The Korean Journal of Physiology and Pharmacology ; : 625-632, 2017.
Article in English | WPRIM | ID: wpr-727952

ABSTRACT

Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the α-synuclein (α-syn) gene. Mutant α-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T α-synuclein (α-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the α-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo α-syn Tg mice. In the challenging beam test, the hemi and homo α-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant α-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the α-syn Tg mice. Moreover, A53T α-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T α-syn mice can be explained by downregulation of DJ-1.


Subject(s)
Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Adhesives , Apoptosis , Dopamine , Dopaminergic Neurons , Down-Regulation , Hominidae , Mice, Transgenic , Neurons , Parkinson Disease , Point Mutation , Synucleins , Tyrosine 3-Monooxygenase , Ubiquitin
6.
The Korean Journal of Physiology and Pharmacology ; : 245-249, 2011.
Article in English | WPRIM | ID: wpr-727877

ABSTRACT

Amphetamine, a synthetic psychostimulant, is transported by the dopamine transporter (DAT) to the cytosol and increases the exchange of extracellular amphetamine by intracellular dopamine. Recently, we reported that the phosphorylation levels of ezrin-radixin-moesin (ERM) proteins are regulated by psychostimulant drugs in the nucleus accumbens, a brain area important for drug addiction. However, the significance of ERM proteins phosphorylation in response to drugs of abuse has not been fully investigated. In this study, using PC12 cells as an in vitro cell model, we showed that amphetamine increases ERM proteins phosphorylation and protein kinase C (PKC) beta inhibitor, but not extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinases (PI3K) inhibitors, abolished this effect. Further, we observed that DAT inhibitor suppressed amphetamine-induced ERM proteins phosphorylation in PC12 cells. These results suggest that PKCbeta-induced DAT regulation may be involved in amphetmaine-induced ERM proteins phosphorylation.


Subject(s)
Animals , Amphetamine , Brain , Cytosol , Dopamine , Dopamine Plasma Membrane Transport Proteins , Nucleus Accumbens , PC12 Cells , Phosphatidylinositol 3-Kinases , Phosphorylation , Phosphotransferases , Protein Kinase C , Proteins , Illicit Drugs , Substance-Related Disorders
7.
Cancer Research and Treatment ; : 74-81, 2007.
Article in English | WPRIM | ID: wpr-195937

ABSTRACT

PURPOSE: The diverse experimental environments in microarray technology, such as the different platforms or different RNA sources, can cause biases in the analysis of multiple microarrays. These systematic effects present a substantial obstacle for the analysis of microarray data, and the resulting information may be inconsistent and unreliable. Therefore, we introduced a simple integration method for combining microaray data sets that are derived from different experimental conditions, and we expected that more reliable information can be detected from the combined data set rather than from the separated data sets. MATERIALS AND METHODS: This method is based on the distributions of the gene expression ratios among the different microarray data sets and it transforms, gene by gene, the gene expression ratios into the form of the reference data set. The efficiency of the proposed integration method was evaluated using two microarray data sets, which were derived from different RNA sour-ces, and a newly defined measure, the mixture score. RESULTS: The proposed integration method intermixed the two data sets that were obtained from different RNA sources, which in turn reduced the experimental bias between the two data sets, and the mixture score increased by 24.2%. A data set combined by the proposed method preserved the inter-group relationship of the separated data sets. CONCLUSION: The proposed method worked well in adjusting systematic biases, including the source effect. The ability to use an effectively integrated microarray data set yields more reliable results due to the larger sample size and this also decreases the chance of false negatives.


Subject(s)
Bias , Dataset , Gene Expression , RNA , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL