Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Nutrition Research and Practice ; : 106-113, 2010.
Article in English | WPRIM | ID: wpr-160521

ABSTRACT

In this study, we compared corn gluten hydrolyzates, BCAAs, and leucine for their effects on body weight reduction in high fat-induced obese rats in order to determine the major active components in the corn gluten hydrolyzates. After obesity was induced for 13 weeks with high fat diet, the overweight-induced SD rats (n = 64) were stratified according to body weight, randomly blocked into eight treatments, and raised for 8 weeks. Four groups were changed to a normal diet and the other groups remained on the high fat diet. Each of the groups within both diets was fed either casein, corn gluten hydrolyzates, leucine, or branched chain amino acids, respectively. Daily food intake, body weight gain, and food efficiency ratio were significantly lower in the corn gluten hydrolyzate groups compared to the other groups, regardless of the high fat diet or normal fat diet. The rats fed the corn gluten hydrolyzates diet had the lowest perirenal fat pad weights whereas muscle weight was significantly increased in the corn gluten hydrolyzates groups. Plasma triglyceride, hepatic total lipid, and total cholesterol contents were significantly reduced in the corn gluten hydrolyzates groups. Other lipid profile measurements were not significantly changed. Plasma triglyceride and hepatic total lipid were also significantly reduced in the BCAA and leucine groups. Leptin levels were significantly lower and adiponectin was significantly higher in the corn gluten hydrolyzates groups. Fasting blood glucose, insulin, C-peptide, and HOMA-IR levels were also significantly reduced in the corn gluten hydrozylates groups, regardless of fat level.


Subject(s)
Animals , Rats , Adiponectin , Adipose Tissue , Amino Acids , Blood Glucose , Body Weight , C-Peptide , Caseins , Cholesterol , Diet , Diet, High-Fat , Eating , Fasting , Glutens , Insulin , Insulin Resistance , Leptin , Leucine , Muscles , Obesity , Plasma , Weights and Measures , Zea mays
2.
Nutrition Research and Practice ; : 272-278, 2009.
Article in English | WPRIM | ID: wpr-22304

ABSTRACT

Postprandial hypoglycemic effect of mulberry leaf (Morus alba L.) was compared in two animal models: Goto-Kakizaki (GK) rats, a spontaneous non-obese animal model for type II diabetes, and their counterpart control Wistar rats. First, the effect of a single oral administration of mulberry leaf aqueous extract (MLE) on postprandial glucose responses was determined using maltose or glucose as substrate. With maltose-loading, MLE reduced peak responses of blood glucose significantly in both GK and Wistar rats (P < 0.05), supporting the inhibition of alpha-glucosidase by MLE in the small intestine. With glucose-loading, MLE also significantly reduced blood glucose concentrations, measured at 30 min, in both animal models (P < 0.01), proposing the inhibition of glucose transport by MLE. Next, dried mulberry leaf powder (MLP) was administered for 8 weeks by inclusion in the diet. By MLP administration, fasting blood glucose was significantly reduced at weeks 4 and 5 (P < 0.05), but then returned to values that were similar to those of the control at the end of experimental period in GK rats. Insulin, HOMA-IR, C-reactive protein, and triglycerides tended to be decreased by MLP treatment in GK rats. All other biochemical parameters were not changed by MLP administration in GK rats. Collectively, these findings support that MLE has significant postprandial hypoglycemic effect in both non-obese diabetic and healthy animals, which may be beneficial as food supplement to manage postprandial blood glucose. Inhibitions of glucose transport as well as alpha-glucosidase in the small intestine were suggested as possible mechanisms related with the postprandial hypoglycemic effect of MLE.


Subject(s)
Animals , Rats , Administration, Oral , alpha-Glucosidases , Blood Glucose , C-Reactive Protein , Diet , Dietary Supplements , Fasting , Glucose , Hypoglycemic Agents , Insulin , Intestine, Small , Maltose , Models, Animal , Morus , Rats, Wistar , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL