Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Cell Journal [Yakhteh]. 2013; 14 (4): 298-305
in English | IMEMR | ID: emr-140465

ABSTRACT

Endothelial progenitor cells [EPCs] have a potential application for cell therapy, however, their biological nature is not well-understood. EPCs also possess some stemness features, such as their clonogenicity and differentiation capacity. The main aim of this study was to evaluate the expression of certain transcription factors regulating self-renewal property of stem cells. In this experimental study, peripheral blood mononuclear cells were isolated from fresh human blood of several volunteers and were cultured in fibronectin- coated plates. EPCs were identified based on their morphology and growth characteristic. Then, the expression of some markers implicated in self-renewal capacity was assessed in the isolated cells using reverse transcription-polymerase chain reaction [RT-PCR] and immunocytochemistry. Expression of the cell surface markers, CD31 and CD34, was determined by RT-PCR and immunocytochemistry. Furthermore, these cells had the ability for Di-AC-LDL incorporation as well as attachment to lectin I. EPCs did not express the main stem cell markers, like OCT4-A, Nanog, and Sox2; nevertheless, they expressed the weaker pluripotent markers, including OCT4B and OCT4-B1 spliced variants, such as Nucleostemin and ZFX. Furthermore, the expression of Nucleostemin and ZFX genes revealed a decreasing pattern from days 4[th] to 11[th]. The main regulators of stem cell self-renewal genes, including OCT4-A, Nanog, and Sox2 are not expressed in EPCs. Forced expression of these genes can elevate the stemness property and clinical application of EPCs


Subject(s)
Humans , Endothelial Cells , Gene Expression , Leukocytes, Mononuclear , Reverse Transcriptase Polymerase Chain Reaction , Immunohistochemistry , RNA
2.
IJPR-Iranian Journal of Pharmaceutical Research. 2012; 11 (2): 533-540
in English | IMEMR | ID: emr-131762

ABSTRACT

Two omega-3 fatty acids including docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA] are essential for the physiologic function of neuronal cell membrane. Normal function of neuronal cell membrane requires appropriate composition of fatty in its structure. Present study was designed to compare the effect of short-term and long-term pretreatment with omega-3 fatty acids on scopolamine-induced amnesia and possible involvement of apoptotic or oxidative pathways. Male Wistar rats were gavaged by omega-3 fatty acids [60 mg/Kg [DHA + EPA]] or saline for 2 weeks [short-term model] or 8 weeks [Long-term model], then received intra-CA1 scopolamine [2 mg/rat]. Finally, the avoidance response was examined and hippocampus tissue was prepared. Intra-CA1 injection of scopolamine abolished the memory performance in rats. Short-term or long-term pretreatment with omega-3 fatty acids improved memory [p < 0.01 and p < 0.001, respectively]. Pretreatment for 2 weeks had no effect on the tissue Malondialdehyde [MDA] contents or SOD and CAT activity. In addition, pretreatment for 2 weeks with omega-3 fatty acids had no effects on tissue Bax and Bcl-2 expression. Conversely, long-term pretreatment with omega-3 fatty acids decreased tissue MDA contents [p < 0.01], SOD activity [p < 0.05] and increased CAT activity [p < 0.01]. Long-term pretreatment with omega-3 fatty acids also decreased Bax protein expression [p < 0.05] with no effect on the expression of Bcl-2 protein. In conclusion, long-term exposure to omega-3 fatty acids inhibited the scopolamine-induced oxidative stress, apoptosis and amnesia while the effect of short-term treatment was restricted to the improved memory without significant effect on apoptosis or oxidative stress. Therefore, long-term treatment with low doses of omega-3 fatty acids suggested a suitable treatment for amnesia

3.
Modares Journal of Medical Sciences, Pathobiology. 2011; 13 (4): 33-42
in Persian | IMEMR | ID: emr-136883

ABSTRACT

Cell vital function has correlation with mechanical loadings that cell experiences. Here, effects of in-vitro combined cyclic-static stretch on proliferation of human mesenchymal stem cell [HMSC] were evaluated. HMSCs were cultured on gelatin coated elastic membranes, and exposed to stretch loading. Four different regimes of cyclic, static, combined cyclic-static, and cyclic with a period of unloading were exerted on the elastic membrane. Duration of cyclic loading and static loading was 5 and 12 hours respectively. The results illustrate that 10% cyclic stretch causes cell alignment but there were no significant proliferation differences between control and test group. Combined cyclic-static stretch reduced proliferation significantly while cyclic stretch with an unloading period increased cell proliferation significantly. At last, static stretch did not affect cell proliferation significantly. Cell stretching regimes and post-loading duration are effective factors on cell proliferation

SELECTION OF CITATIONS
SEARCH DETAIL