Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Nuclear Medicine ; : 57-68, 2005.
Article in Korean | WPRIM | ID: wpr-182284

ABSTRACT

PURPOSE: The objective of this study was to assess attenuation correction algorithms with the 137Cs point source for the brain positron emission tomography (PET) imaging process. MATERIALS AND METHODS: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a 137Cs point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. RESULTS: ELAC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. CONCLUSION: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.


Subject(s)
Brain , Noise , Nuclear Medicine , Positron-Emission Tomography , Skull
2.
Korean Journal of Nuclear Medicine ; : 163-173, 2005.
Article in Korean | WPRIM | ID: wpr-106859

ABSTRACT

PURPOSE: Abutted scatter energy windows used for a triple energy window (TEW) method may provide wrong estimation of scatter. This study is to propose an extended TEW (ETEW) method, which doesn't require abutted scatter energy windows and overcomes the shortcomings of TEW method. MATERIALS AND METHODS: The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection windows, which can overestimate or underestimate scatter. The ETEW is compared to the TEW using Monte Carlo simulated data for point sources as well as hot and cold spheres in a cylindrical water phantom. Various main energy window widths (10 %, 15 % and 20 %) were simulated. Both TEW and ETEW improved image contrast, % recovery coefficients and normalized standard deviation. RESULTS: Both of TEW and ETEW improved image contrast and % recovery coefficients. Estimated scatter components by the TEW were not proportional to the true scatter components over the main energy windows when ones of 10 %, 15 %, and 20 % were simulated. The ETEW linearly estimated scatter components over the width of the main energy windows. CONCLUSION: We extended the TEW method into the method which could linearly estimate scatter components over the main energy windows.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Water
SELECTION OF CITATIONS
SEARCH DETAIL