Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Yonsei Medical Journal ; : 187-194, 2017.
Article in English | WPRIM | ID: wpr-126257

ABSTRACT

PURPOSE: To estimate annual health care and productivity loss costs attributable to overweight or obesity in working asthmatic patients. MATERIALS AND METHODS: This study was conducted using the 2003–2013 Medical Expenditure Panel Survey (MEPS) in the United States. Patients aged 18 to 64 years with asthma were identified via self-reported diagnosis, a Clinical Classification Code of 128, or a ICD-9-CM code of 493.xx. All-cause health care costs were estimated using a generalized linear model with a log function and a gamma distribution. Productivity loss costs were estimated in relation to hourly wages and missed work days, and a two-part model was used to adjust for patients with zero costs. To estimate the costs attributable to overweight or obesity in asthma patients, costs were estimated by the recycled prediction method. RESULTS: Among 11670 working patients with a diagnosis of asthma, 4428 (35.2%) were obese and 3761 (33.0%) were overweight. The health care costs attributable to obesity and overweight in working asthma patients were estimated to be $878 [95% confidence interval (CI): $861–$895] and $257 (95% CI: $251–$262) per person per year, respectively, from 2003 to 2013. The productivity loss costs attributable to obesity and overweight among working asthma patients were $256 (95% CI: $253–$260) and $26 (95% CI: $26–$27) per person per year, respectively. CONCLUSION: Health care and productivity loss costs attributable to overweight and obesity in asthma patients are substantial. This study's results highlight the importance of effective public health and educational initiatives targeted at reducing overweight and obesity among patients with asthma, which may help lower the economic burden of asthma.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Asthma/economics , Cost of Illness , Efficiency , Employment , Health Care Costs , Health Expenditures , Obesity/economics , Overweight/economics , United States/epidemiology
2.
Safety and Health at Work ; : 183-191, 2010.
Article in English | WPRIM | ID: wpr-177404

ABSTRACT

OBJECTIVES: The objective of this study is to investigate the distribution patterns and exposure concentrations of bioaerosols in industries suspected to have high levels of bioaerosol exposure. METHODS: We selected 11 plants including 3 livestock feed plants (LF industry), 3 metal working fluids handling plants (MWFs industry), and 5 sawmills and measured total airborne bacteria, fungi, endotoxins, as well as dust. Airborne bacteria and fungi were measured with one stage impactor, six stage cascade impactor, and gelatin filters. Endotoxins were measured with polycarbonate filters. RESULTS: The geometric means (GM) of the airborne concentrations of bacteria, fungi, and endotoxins were 1,864, 2,252 CFU/m3, and 31.5 EU/m3, respectively at the sawmills, followed by the LF industry (535, 585 CFU/m3, and 22.0 EU/m3) and MWFs industry (258, 331 CFU/m3, and 8.7 EU/m3). These concentrations by industry type were significantly statistically different (p < 0.01). The ratio of indoor to outdoor concentration was 6.2, 1.9, 3.2, and 3.2 for bacteria, fungi, endotoxins, and dust in the LF industry, 5.0, 0.9, 2.3, and 12.5 in the MWFs industry, and 3.7, 4.1, 3.3, and 9.7 in sawmills. The respiratory fractions of bioaerosols were differentiated by bioaerosol types and industry types: the respiratory fraction of bacteria in the LF industry, MWF industry, and sawmills was 59.4%, 72.0%, and 57.7%, respectively, and that of fungi was 77.3%, 89.5%, and 83.7% in the same order. CONCLUSION: We found that bioaerosol concentration was the highest in sawmills, followed by LF industry facilities and MWFs industry facilities. The indoor/outdoor ratio of microorganisms was larger than 1 and respiratory fraction of microorganisms was more than 50% of the total microorganism concentrations which might penetrate respiratory tract easily. All these findings suggest that bioaerosol in the surveyed industries should be controlled to prevent worker respiratory diseases.


Subject(s)
Bacteria , Dust , Endotoxins , Fungi , Gelatin , Handling, Psychological , Livestock , Polycarboxylate Cement , Respiratory System
SELECTION OF CITATIONS
SEARCH DETAIL