Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Medical Journal ; (24): 1948-1952, 2013.
Article in English | WPRIM | ID: wpr-273065

ABSTRACT

<p><b>BACKGROUND</b>The RNA-binding motif protein 3 (RBM3), which is transcriptionally induced by low temperature and hypoxia, has recently been found to be upregulated in human tumors. However, its expression status in human astrocytoma is not well defned. This article focuses on the differential expression of RBM3 in human astrocytomas of different grades and normal brain tissues.</p><p><b>METHODS</b>RBM3 was detected in astrocytomas and normal brain tissues by quantitative real-time PCR, immunohistochemistry, and Western blotting. Analysis of variance was performed on the data from quantitative real-time PCR. The Fisher's exact test was used to analyze the immunohistochemistry results. A P-value of less than 0.05 indicates a statistically significant difference.</p><p><b>RESULTS</b>On one hand, the mRNA expression levels of three X-chromosome-related RBM genes (RBMX, RBM3, and RBM10) were detected by quantitative real-time PCR. The results showed that there were no significant differences in RBMX and RBM10 mRNA expression levels in human astrocytomas of different grades and normal brain tissues. However, RBM3 mRNA expression levels were elevated in high-grade (World Health Organization (WHO) Grade III-IV) astrocytomas versus low-grade (WHO Grade I-II) astrocytomas (5.06 ± 0.66 vs. 1.60 ± 0.58; P < 0.05) or normal controls (5.06 ± 0.66 vs. 1.03 ± 0.22; P < 0.05) as determined by quantitative real-time PCR analysis. On the other hand, immunohistochemistry showed an increased RBM3 labeling index in astrocytomas of different grades and normal brain tissues (positive staining rate: astrocytoma Grade IV, 92.9%; astrocytoma Grade III, 81.8%; astrocytoma Grade I-II, 50%; normal brain tissues, 37.5%; high-grade astrocytoma versus normal brain tissues, P < 0.05; high-grade astrocytoma versus low-grade astrocytoma, P < 0.05). The higher protein levels of RBM3 were also validated in high-grade astrocytomas and low-grade astrocytomas compared with normal brain tissues by Western blotting.</p><p><b>CONCLUSIONS</b>These data suggest that the overexpression of RBM3 may serve as an important molecular mechanism underlying astrocytic carcinogenesis. Moreover, RBM3 may have proliferative and/or proto-oncogenic functions in human astrocytomas.</p>


Subject(s)
Humans , Astrocytoma , Genetics , Metabolism , Blotting, Western , Immunohistochemistry , In Vitro Techniques , RNA-Binding Proteins , Genetics , Metabolism , Real-Time Polymerase Chain Reaction
2.
Chinese Medical Journal ; (24): 2025-2031, 2012.
Article in English | WPRIM | ID: wpr-283675

ABSTRACT

<p><b>BACKGROUND</b>The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently stimulates the proliferation and migration of vascular endothelial cells. This study aimed to address the biological importance of c-Myc in the development of gliomas, we downregulated the expression of c-Myc in the human glioblastoma cell line IN500 and studied the in vitro effect on cellular growth, proliferation, and apoptosis and the expression of VEGF and the in vivo effect on tumor formation in a xenograft mouse model.</p><p><b>METHODS</b>IN500Δ cells were stably transfected with shRNA-expressing plasmids for either c-Myc (pCMYC-shRNA) or as a control (pCtrl-shRNA). Following establishment of stable cells, the mRNA expressions of c-Myc and VEGF were examined by reverse transcription (RT)-PCR, and c-Myc and VEGF proteins by Western blotting and immunohistochemistry. Cell-cycle progression and apoptosis were determined by flow cytometry. The in vivo effect of targeting c-Myc was determined by subcutaneous injection of stable cells into immunodeficient nude mice.</p><p><b>RESULTS</b>The stable transfection of pCMYC-shRNA successfully knocked down the steady-state mRNA and protein levels of c-Myc in IN500, which positively correlated with the downregulation of VEGF. Downregulating c-Myc in vitro also led to G1-S arrest and enhanced apoptosis. In vivo, targeting c-Myc reduced xenograft tumor formation and resulted in significantly smaller tumors.</p><p><b>CONCLUSIONS</b>c-Myc has multiple functions in glioblastoma development that include regulating cell-cycle, apoptosis, and VEGF expression. Targeting c-Myc expression may be a promising therapy for malignant glioma.</p>


Subject(s)
Animals , Female , Humans , Mice , Apoptosis , Genetics , Physiology , Cell Cycle , Genetics , Physiology , Cell Line, Tumor , Flow Cytometry , Glioblastoma , Genetics , Metabolism , Therapeutics , Immunohistochemistry , Mice, Nude , Proto-Oncogene Proteins c-myb , Genetics , Metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A , Genetics , Metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL