Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-897306

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

2.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-889602

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

3.
The Korean Journal of Physiology and Pharmacology ; : 385-394, 2020.
Article in English | WPRIM | ID: wpr-896227

ABSTRACT

Eupatilin is known to possess anti-apoptotic, anti-oxidative, and antiinflammatoryproperties. We report here that eupatilin has a protective effect onthe ethanol-induced injury in rats. Sprague–Dawley rats were divided into 6 groups:control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase(ALT) were analyzed to determine the extent of liver damage. Total cholesterol(TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis.Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH)level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor(TNF)- and interleukin (IL)-1 were quantified to verify the degree of inflammation.Based on our findings, chronic alcohol treatment significantly changed the serumindexes and liver indicators of the model rats, which were significantly improved byeupatilin treatment. Rats in the eupatilin-treatment group showed reduced levelsof AST, ALT, TG, TC, TNF-, and IL-1, increased SOD activity and GSH levels, and improvedoverall physiology compared to the alcoholic liver disease model rats. H&Estaining also verified the eupatilin-mediated improvement in liver injury. In conclusion,eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatoryeffects.

4.
The Korean Journal of Physiology and Pharmacology ; : 385-394, 2020.
Article in English | WPRIM | ID: wpr-903931

ABSTRACT

Eupatilin is known to possess anti-apoptotic, anti-oxidative, and antiinflammatoryproperties. We report here that eupatilin has a protective effect onthe ethanol-induced injury in rats. Sprague–Dawley rats were divided into 6 groups:control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase(ALT) were analyzed to determine the extent of liver damage. Total cholesterol(TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis.Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH)level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor(TNF)- and interleukin (IL)-1 were quantified to verify the degree of inflammation.Based on our findings, chronic alcohol treatment significantly changed the serumindexes and liver indicators of the model rats, which were significantly improved byeupatilin treatment. Rats in the eupatilin-treatment group showed reduced levelsof AST, ALT, TG, TC, TNF-, and IL-1, increased SOD activity and GSH levels, and improvedoverall physiology compared to the alcoholic liver disease model rats. H&Estaining also verified the eupatilin-mediated improvement in liver injury. In conclusion,eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatoryeffects.

5.
Biomolecules & Therapeutics ; : 101-106, 2019.
Article in English | WPRIM | ID: wpr-719635

ABSTRACT

Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, 10⁻⁴ M). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine A1 receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an α₁-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular Ca²⁺ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.


Subject(s)
Animals , Humans , Rats , Acetylcholine , Atropine , Blood Glucose , Calcium Channels , Injections, Intraperitoneal , Muscle, Smooth , Papaverine , Prazosin , Protein Kinase C , Receptor, Adenosine A1 , Receptors, Muscarinic , Streptozocin , Type C Phospholipases , Urinary Bladder , Verapamil
6.
Biomolecules & Therapeutics ; : 374-379, 2018.
Article in English | WPRIM | ID: wpr-715617

ABSTRACT

In this study, we investigated the effects of pelargonidin, an anthocyanidin found in many fruits and vegetables, on endothelium-independent vascular contractility to determine the underlying mechanism of relaxation. Isometric contractions of denuded aortic muscles from male rats were recorded, and the data were combined with those obtained in western blot analysis. Pelargonidin significantly inhibited fluoride-, thromboxane A2-, and phorbol ester-induced vascular contractions, regardless of the presence or absence of endothelium, suggesting a direct effect of the compound on vascular smooth muscles via a different pathway. Pelargonidin significantly inhibited the fluoride-dependent increase in the level of myosin phosphatase target subunit 1 (MYPT1) phosphorylation at Thr-855 and the phorbol 12,13-dibutyrate-dependent increase in the level of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation at Thr202/Tyr204, suggesting the inhibition of Rho-kinase and mitogen-activated protein kinase kinase (MEK) activities and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxation effect of pelargonidin on agonist-dependent vascular contractions includes inhibition of Rho-kinase and MEK activities, independent of the endothelial function.


Subject(s)
Animals , Humans , Male , Rats , Anthocyanins , Aorta , Blotting, Western , Endothelium , Fluorides , Fruit , Isometric Contraction , Muscle, Smooth, Vascular , Muscles , Myosin-Light-Chain Phosphatase , Phosphorylation , Phosphotransferases , Protein Kinases , Relaxation , rho-Associated Kinases , Vasoconstriction , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL